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SUMMARY 

The extreme sensitivity of superconducting magnetic gradio- 

meters affords means of measuring gradients of fluctuating magnetic 

fields generated by ocean waves.  The fields fluctuate in concert 

with motions of ocean waves, so that reading fluctuations of 

magnetic fields above an ocean tells the motion of seawater below 

its surface.  As a first step in developing requisite experimental 

and analytical techniques, we plan to use a superconducting mag- 

netic gradiometer to measure fluctuating gradients of magnetic 

fields generated at a fixed point above the surface by waves 

passing the oceanographic tower operated by the Naval Undersea 
it 

Center. 

The response of a superconducting magnetic gradiometer to 

ambient magnetic fields having gradients that are sensibly con- 

stant over the length of its axis (typically 25 cm or so) is 

a sum of two terms.  One term is proportional to the magnetic 

field at the midpoint of the axis, and the other term, to a 

gradient of the magnetic field at the midpoint.  The term pro- 

portional to the magnetic field results from slight differences 

in area and orientation of the loops forming the pickup cir- 

cuit of the gradiometer and vanishes for a perfectly balanced 

gradiometer.  The term proportional to a gradient of the mag- 

netic field depends on five independent elements of a symmetric 

matrix having a vanishing trace that represents gradients of 

the ambient field at the midpoint. 

The five elements define location, orientation, and moment 

of a dipole positioned on a sphere of unit radius about the 

midpoint that gives gradients at the midpoint equal to gradients 

of the ambient field there.  The construct of an equivalent 

dipole concisely describes the gradient response.  For example, 

fluctuations in location, orientation, and moment of an equi- 

valent dipole describe gradients from fluctuating magnetization 

currents in magnetic objects as well as from fluctuations in 

position and orientation of a gradiometer. 

The tower is located about one mile off Mission Beach near 
San Diego, California, in 18 m of water. 
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Moreover, it provides a rationale for two techniques that 

afford means of suppressing gradient fluctuations from nearby 

magnetic objects; namely, (1) using a gradiometer axis having 

coplanar pickup loops (transverse configuration) and aligning 

it for a null response and (2) using a magnetic dipole to 

cancel steady gradients.  Transverse gradients of the magnetic 

field of a dipole vanish in certain directions, so that aligning 

a gradiometer measuring transverse gradients for a null response 

suppresses fluctuating gradients from magnetic objects.  Placing 

an opposing dipole at the location of an equivalent dipole 

nullifies gradients at the field point and so suppresses appar- 

ent gradient fluctuations owing to changes in gradiometer orien- 

tation. 

Preliminary tests of suppression techniques conducted with 

our gradiometer, which has two coplanar pickup loops spaced 

25 cm between centers, demonstrate that their effectiveness is 

limited only by precision of requisite alignments.  Aligning 

the gradiometer within a few degrees (^ 0.1 radian) for a null 

response to gradient fluctuations from a spherical iron shell 

having a radius of 0.74 m and placed 4.5 m north of the gradio- 

meter reduces RMS fluctuations in the frequency band 0.001 to 

0.01 Hz by about a factor of ten.  Crude positioning of a coil 

approximating an opposing magnetic dipole at the location of 

an equivalent dipole reduces steady gradients from the sphere 

by a factor of 100. 

Design of the gradiometer, insofar as practical, eliminates 

sources of instrument noise driven by fluctuations of ambient 

temperature and pressure and of the earth's magnetic field by 

using materials within the helium bath that are free of para 

magnetic impurities.  A rectangular block of high-purity crys- 

talline silicon, for example, supports the two niobium wire 

pickup loops on a lateral face.  Spectra that characterize 
-4 noise in the frequency range 5 X 10   to 20 Hz of the gradio- 

meter operating in a magnetically quiet environment are effec- 

tively white at frequencies above about 0.1 Hz with a spectral 
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density* of 0.03 (pT/m) /Hz and are of the form S(f) = s(f0
) 

(f /f)Y at frequencies below 0.1 Hz.  A value of 1.3 for y 

with S(f ) - 0.002 {pT/m)2/Hz at f  = 1 Hz is representative. 

Intrinsic noise of the superconducting quant urn interference 

device (SQUID) used in the instrument to sense magnetic flux 

dominates spectra observed in a quiet environment at freqencien 

below 0.1 Hz. 

As shown in the following figure, spectral density of 

inherent noise of the instrument is well below the level of 

spectral densities of gradients expected from oceanic internal 

waves passing the oceanographic tower operated by the Naval 

Undersea Center.  To measure gradients from waves passing the 

tower, we plan to jut the gradiometer over water on a rigid 

nonmagnetic cantilever extending horizontally 25 meters from 

the centerline of the tower off its south face.   Measurements 

of steady gradients from magnetization currents in the steel 

structure of the tower show that gradients at positions in a 

vertical plane of symmetry of the structure are represented 

by gradients of equivalent dipoles located in the plane of 

symmetry.  Aligning the gradiometer with a precision of 0.01 

radians, or 0.6 degrees, for a null response from the equiva- 

lent dipole keeps noise from fluctuating magnetization currents 

in the tower below the level of instrument noise.  Structural 

design of the cantilever limits translational and rotational 

RMS fluctuations of the instrument to 0.1 mm and a few seconds 

of arc ( 10"5 radians) in the bandwidth 0.002 to 0.005 Hz and, 

together with a coil positioned on the cantilever to reduce 

steady gradients from the tower, keeps noise from irregular 

motions of the instrument in the steady gradients below the 

level of instrument noise. 

We use MKS units throughout and conform to the international 
convention suggesting use of the unit Tesla, which is a 

Weber/m2 and so 1 pT/m = 10"12T/m = 10"10G.cm - 10~ gamma/m. 
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Three typical spectra of fluctuating gradients of magnetic 

fields expected 7 m above the surface from internal waves passing 

the oceanographic tower operated by the Naval Undersea Center as 

compared to the inherent noise spectrum of the instrument.  Spectra 

are estimates based on spectral measurements of isotherm displace- 

ments made during August 1972.  Serial numbers marking spectra tell 

the month, day, and local time at the beginning of corresponding 

time series; for example, 08211540 means August 21 at 15:40 hours 

(PST). 
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Section I 

INTRODUCTION 

The unprecedented sensitivity of superconducting magnetic 

gradiometers affords means of measuring fluctuating gradients 

of magnetic fields generated by oceai waves.  Seawater moving 

across the earth's magnetic field drives electric currents 

that produce weak magnetic fields above the oceans.  The fields 

fluctuate in concert with motions of ocean waves, so that 

reading fluctuations of magnetic fields above an ocean tells 

the motion of seawater below its surface.  Podney (1975) among 

others describes the fluctuating magnetic field that results 

from a wave progressing horizontally in a stratified ocean. 

Our aim is to tell motions of seawater from measurements 

of fluctuating magnetic fields over oceans.  As a first step 

in developing requisite experimental and analytical techniques, 

we plan to use a superconducting magnetic gradiometer to mea- 

sure fluctuating gradients of magnetic fields generated at a 

fixed point above the surface ^y waves passing the oceanographic 

tower operated by the Naval Undersea Center.  The tower is loca- 

ted about one mile off Mission Beach near San Diego, California 

in 18 m of water.  Successful completion of the first step pro- 

vides the experience and information necessary for planning, 

carrying out, and interpreting measurements over the open ocean 

using an airborne gradiometer.  Measurements at a fixed point 

above the surface, in effect, provide the code for reading 

motions of seawater in Measurements made over an open ocean 

from aircraft. 

The tower provides a stable platform for jutting the instru- 

ment over water on a cantilever support.  Surface and internal 

waves passing the tower have simple spectra that are well 

mmr.'-~~m*mm I'm   . - 



characterized by past measurements using thermistor mains and 

current meters (Cox, 1962; La Fond, 1962; Winant and Olson, 

1976; and Ziemer, 1976) and provide a readily accessible source 

for first measurements.  Nonetheless, nagnetization currents 

in the steel structure of the tower make the task of measuring 

fluctuating gradients from the waves an exacting one.  To pre- 

pare for carrying out measurements at the tower, ve completed 

the following tasks: 

o  Specification, procurement, and acceptance tests of 

a suitable superconducting magnetic gradiometer* 

o  Land based trials of the gradiometer conducted to 

estimate spectra of inherent instrument noise in a 

quiet environment and to determine effectiveness of 

techniques designed to suppress noise from nearby 

magnetic oojects 

o  Specification of fluctuatincj  radients of magnetic 

fields expected from waves passing the tower. 

o Use of a fluxgate gradiometer to measure gradients 

of the steady magnetic field produced by magnetiza- 

tion currents in the steel structure of the tower 

(Gillespie and Podney, 1976) 

o Design of a rigid nonmagnetic cantilever re- 

quired to project the instrument over water** 

Ziemer and Gillespie (1976) describe early planning for 

measurements at the tower and present a chronology of the 

design specification, procurement, and acceptance tests of 

the gradiometer.  Here, we describe use of the instrument 

*  Superconducting Technology, Inc. constructed the instrument. 

** Mechanics Research, Inc. developed a structural design to 
meet stability requirements set by Physical Dynamics, Inc. 
(Haire and Van Lerberg, 1976) 
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to measure gradients of ambient magnetic fields and develop a 

procedure for operating at the tower that suppresses noise 

from magnetization currents in the steel structure.  The pro- 

cedure unites results of the last three tasks. 

We first describe design features of the instrument in 

Section II.  Insofar as practical, the design eliminates sources 

of instrument noise driven by fluctuations of ambient tempera- 

ture and pressure and cf the earth's magnetic field by using 

materials within the helium bath that are free of paramagnetic 

impurities.  Two loops of niobium wire mounted on a lateral 

face of a rectangular block (2 X 2 X 12 in.) of high-purity 

crystalline silicon, for example, form the pickup circuit of 

the gradiometer. 

Section III gives a formulation describing instrument 

response to ambient magnetic gradients that are sensibly con- 

stant over the distance separating centers of the pickup loops. 

Because the loops are coplanar, the gradiometer responds to 

a transverse gradient of the magnetic field at the point mid- 

way between centers of the loops.  Slight differences in area 

and orientation of the loops give an imbalance response pro- 

portional to the magnetic field at the midpoint as well.  The 

gradient field of a magnetic dipole located on a sphere of 

unit radius about the midpoint describes the part of the re- 

sponse owing to ambient gradients. 

Section IV describes procedures for making mechanical and 

electronic adjustments to nullify the part of the response owing 

to imbalance.  Moving three small niobium disks mounted on 

slides near one loop adjusts its effective area and orientation 

and balances response of the loops to a uniform magnetic flux. 

Electronically substracting a fraction of the magnetic field 

components measured by a triaxial fluxgate magnetometer near 
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the midpoint from the qradiometer response provides "t riier 

balancing.  Procedures for balancing a gradiometer in both 

uniform and nonuniform ambient magnetic fields are presented. 

In Section V, we present the first measurements of spectra 
— 4 

that characterize noise in the frequency range 5 X 10   to 20 

Hz of a superconducting magnetic gradiometer operating in a 

magnetically quiet environment.  Spectra are effectively white 

at frequencies above about 0.1 Hz with a spectral density* of 

0.03 (prT,/m)2/Hz and are of the form S(f) = S(fo)(f0/f)  at 

frequencies below 0.1 Hz.  A value of 1.3 for y  with S(fo) = 

0.002 {pT/m)2/Hz at f0 = 1 Hz is representative of values 

observed during quiet periods.  Intrinsic noise of the super- 

conducting quantum interference device (SQUID) used in  he 

instrument to sense magnetic flux then dominates observed 

spectra at frequencies below 0.1 Hz.  Use of a dc-type SQUID 

(Clarke et. al., 1975) would improve instrument performance 

nearly tenfold. 

In Section VI, we give a rationale for two techniques 

that provide means of suppressing noise from nearby magnetic 

objects; namely, (1) alianing the gradiometer to obtain a null 

response, and (2) using a magnetic dipole to cancel steady gra- 

dients.  We describe noise from nearby magnetic objects in terms 

of gradient fluctuations corresponding to small changes in loca- 

tion, orientation, and moment of a magnetic dipole located on 

a sphere of unit radius about the midpoint of the gradiometer 

axis.  Because transverse gradients of the magnetic field of 

a dipole vanish in certain directions, response of a gradio- 

meter measuring transverse gradients vanishes at certain orien- 

tations.  Aligning it for null response suppresses noise from 

magnetic objects.  Placing an oppositely directed dipole at the 

location of an equivalent dipole nullifies steady gradients at 

the midpoint and so suppresses apparent gradient fluctuations 

owing to changes in gradiometer orientation. 

* we use MKS units throughout and conform to the international 

convention suggesting use of the unit Tesla, which is a 

Weber/m2 and so IpT/m = lO^T/m - lO'^G/cm = 10" gamma/m. 



Section VII presents results of preliminary tests of noise 

suppression techniques.  Our field tests show that the construct 

of an equivalent dipole gives a useful description of the re- 

sponse to gradients that are sensibly constant over the length 

of a gradiometer axis.  Preliminary tests using crude means 

of aligning the gradiometer reduce noise power by a factor of 

100 and suggest that reduction of noise is limited by align- 

ment precision alone. 

Finally, Section VIII describes a procedure for operating 

at the tower that both uses the techniques to suppress noise 

from magnetization currents in the steel structure and gives 

a maximum response to gradients from internal waves.  We plan 

to jut the gradiometer over water on a rigid nonmagnetic canti- 

lever extending horizontally 25 meters from the centerline of 

the tower off its south face.  Figure 1 shows that spectral 

densities of gradients expected from internal waves are well 

above the level of instrument noise.  Aligning the gradiometer 

for a null response with a precision of 0.01 radians, or 0.6 

degrees, keeps noise from fluctuating magnetization currents 

in the tower below the level of instrument noise.  Limiting 

translational and rota'-ional RMS fluctuations of the instrument 
-5 

to 0.1 mm and a few seconds of arc ( 10  radians) in the band- 

width 0.002 to 0.005 Hz keeps noise from irregular motions of 

the instrument in the steady gradient field of the tower below 

the level of. instrument noise. 
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Section II 

INSTRUMENT DESCRIPTION 

As shown in Figure 2a, the instrument comprises a qradio- 

meter probe immersed in a bath of liquid helium contained 

in the interior vessel of a Dewar made of a fiber glass 

laminate.  A wrapping of about 50 alternating layers of 

fiber glass cloth and aluminized Mylar covering the interior 

vessel reduces radiative heat flow across the vacuum separa- 

ting the inner vessel and outer jacket of the Dewar.  The 

outer jacket is 26" in diameter and 40" in length, and the 

Dewar weighs about 250 lbs.  Liquid helium in the reservoir, 

which has a capacity of 160 liters, boils off to the atmo- 

sphere at a rate somewhat less than 3 liters per day. 

The probe supports a rectangular block (2" X 2" X 12") 

of high-purity, crystalline silicon.  Two loops of niobium 

wire mounted on a lateral face of the block form the pickup 

circuit of the gradiometer.  Three small niobium disks 

mounted on slides near the top loop provide means of adjusting 

the effective area and orientation of the loop in order to 

balance response of the loops to a uniform magnetic flux. 

A niobium capsule fixed midway between loop centers contains 

a torodial, point-contact type SQUID that senses differential 

magnetic flux threading the pickup loops. 

The silicon block is housed at the foot of the probe in 

a tube 3" in diameter and 15" long, which fits into a 

matching socket fixed to the bottom of the helium reservoir. 

Both the housing and its socket are made of a laminate 

reinforced with Kevlar* cloth.  Four fiber glass rods with 

reinforcing spacers attach the foot of the probe to its 

top plate, which bolts to the top of the Dewar.  The top 

*  Kevlar is a trade name for an organic fiber manufactured 
by the Du Pont Co. 
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plate of the probe holds an rf electronics box used to drive 

the SQUID, three removable brass micrometers used to adjust 

slides during balancing, and a three-axis fluxgate magneto- 

meter used both to orient the gradiometer axis and to pro- 

vide vernier balancing, as described subsequently. 

A. DESIGN FEATURES 

Because susceptibility of paramagnetic substances is 

inversely proportional to temperature at temperatures of a 

few degrees Kelvin, we use, where practical, materials with- 

in the helium bath that are free of paramagnetic impurities 

in order to eliminate noise from magnetization currents 

driven by fluctuations of ambient temperature and pressure 

and of the earth's magnetic field.  In addition to its high 

purity, crystalline silicon has a high thermal conductivity 

that smooths thermal gradients in the neighborhood of the 

gradiometer pickup loops. 

J 

Although the laminate reinforced with Kevlar cloth is 

effectively free of paramagnetic impurities, the fiber 

glass laminate is contaminated.  Susceptibility of the fiber 

glass laminate, resulting from paramagnetic impurities, is 
-4      o about 2 X 10  at 4.2 K.  Nonetheless, alternatives to a 

fiber glass interior vessel, such as quartz, are as yet im- 

practical for the large capacity Dewars required for operating 

at remote field sites. 

Fluctuations of the earth's magnetic field also drive 

eddy currents in the aluminized Mylar layers rapped around 

the interior vessel to reduce radiative heat flow. Because 

dielectric materials are poor reflectors, conducting layers 

are required to reflect radiant heat. Noise resulting from 

fluctuating eddy currents, however, does not markedly in- 
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crease with decreasing frequency because amplitude of eddy 

current fluctuations is proportional to excitation frequency, 

B SUPERCONDUCTING CIRCUIT 

Figure 2b is a diagram of the superconducting circuit. 

Two coplanar pickup loops, each 1.45 cm in diameter and 

spaced 25 cm between centers, are oppositely wound in series, 

so that fluctuations of the super current, I,, in the pickup 

circuit are driven by fluctuations in the net ambient flux 

threading the pickup loops.  Fluctuations in the net flux 

are coupled to the SQUID sensor through an rfi transformer 

containing a normal metal shield between its superconducting 

windings that attenuates interference at radio frequencies 

(above 19 KHz).  The flux coupled to the sensor is the pro- 

duct of the super current, I2, in the coupling circuit and 

the mutual inductance between the sensor and the field 

coil.  The SQUID sensor itself is effectively an open circuit 

for low frequency fluctuations (Zimmerman, 1971) . 

Because the net voltage around each superconducting cir- 

cuit vanishes, the flux coupled to the sensor, * , is pro- 

portional to the net flux threading the pickup loops, $ ; 

namely, 

1/2 
'!> 
a - KtKs 

(VV l 1*2] (la) 
* (!+£,) (1+Ä2)-Kt ÄJ^J 

where i,   = Li/L 
1   1 P 

i2   - L2/Lf; Lp, Ls, Lf, L,, and L- are 

self inductances of the circuit components labeled in Figure 

2b;and the coefficients K  and K are a measure of coupling 

between windings of the rfi transformer and between the field 

coil and the SQUID sensor, respectively.  Equation la shows 
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that the flux coupled to the sensor is greatest for 2-, = ?,„ 
2 -1/2 

= (1-K  )    , at fixed values of L  and L , and that its 
t p     s 

greatest value is given by 

in 

S (L /L ) ' 
—   s  p 

K, 

2 1/2 1+(1-Kt )^ 

(lb) 

In our instrument, L  = 300 nH, L  = 0.05 nH, K  = 0.7, 
p s s 

and windings in the rfi transformer are adjusted to give a 

maximum flux ratio of 

!' 
S   = 2.26 X 10"3 (2; 

111 

with K  = 0.8. 

From the diameter and spacing of the pickup loops, we find 

that an ambient gradient* of 5.32 pT/m produces a net ambient 

flux of one quantum, <J>o, at the pickup loops.  Equation 2 then 

tells us that a gradient of 1 pT/m at most applies a flux of 

4.25 X 10"  *0/{pT/m)at the SQUID sensor.  A change in flux of 

one quantum applied to the SQUID gives an output of 12.7 volts. 

At best, then, we expect a calibration constant of 5.4 mV/(pT/m) 

Our measured value is 4.5 mV/(pT/m) '_  15%, which indicates that 

the instrument is operating with nearly the maximum flux ratio. 

* We use MKS units throughout and conform to the international 

convention suggesting use oi the unit Tesla, which is a 
2 -12        -10 -3 

Weber/m and so IpT/m - 10  T/m = 10  G/cm = 10  gamma/m 

and   <I>o  =   2.07   X  10"3pTm2. 

8 
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Section III 

INSTRUMENT RESPONSE TO AMBIENT MAGNETIC GRADIENTS 

We describe the response of an axis of a superconducting 

magnetic gradiometer to ambient magnetic gradients in terms 

of the differential magnetic flux threading the two pickup 

loops whose centers are separated by a distance 2s.  Areas 

of the loops are A, and A9, and respective normals to the 

plane of each loop are directed along unit vectors n1  and n2, 

as shown in Figure 3.  Pickup loops are connected in opposi- 

tion, so that the instrument responds to the differential 

magnetic flux threading the loops; namely, <P = ^ - ^ 

The relations 

=      I     d]?1n1.b(R+s+'plft) (3a) 

and 

=  /  d?2'ft2-b{R-s+p2,t)  , (3b) 

express magnetic flux threading each loop in terms of^integrals 

of the density of magnetic flux, MR+s+^t) and t (R-S+152, t) , 

at points within each loop.  Here, R is a position vector loca- 

ting the point midway between loop centers; vectors s and -s 

locate loop centers with respect to the midpoint; P1 and t2 

are radius vectors locating points within a IOOD contour; and 

integrals extend over the area of each loop.  By expanding 

flux densities in Taylor's series about the midpoint, we express 

the flux threading each loop as 

LI —■—W ~"l P        I  —' ■MM 



(J), = A. 1 + 

oo 
(I.v)m 

n^b^t) 

oo m ,   /- 

iiiZi    / dp1 (rrl.v)K^1.b(R,t; 
m^Tk-f (m-k): kl ^ 

A, 

V^^o/        ill 

LE 
(3c) 

and 

4>2 = A2 

oo rn 

EZ 

L+ V (-DM- !n ' V)m 

m^l ml 

B2-b(R,t) 

(-l)m'k(s.V)m~^ ff*   '*    ^-k- 
m=lk-1     (m-k) ! kl 

dp2fp2.V)Kn2-b(R,t) 

(3d) 

where b(R,t) is the magnetic flux density at the point midway 

between loor centers.  For symmetrical pickup loops, integral 

terms of odd order in Equations 3c and 3d vanish because inte- 

grands are periodic. 

If area and orientation of the loops are identical so that 

A1 - A2 = A and n
1  = n2  =  n, then the relation 

oo 

 — n.b(R,t) 
*s«  s m=1  (2m-l)! 

oo m 2(m-k)+l 

m=1 k=1'[2(m-k)    A 

gives  the  response,   and  so  to   first  order 

sA fö'r^[2(m-k)+l]!(2k):  -! 
V)^K^.b(R,t) 

(3e) 

<I>/2sA  »   (ä.V)fi.b(R,t). (3f) 
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Higher order terms are negligible provided gradients of the am- 

bient field are sensibly constönt over the distance between pickup 
2 

loops.  Specifically, we require that (s/R) «1, where R is a 

characteristic scale of the ambient field.  In the field of a 

dipole, for example, R is distance from the dipole. 

Because of slight differences in area and orientation of 

the pickup loops,however, the response includes an imbalance 

or error term.  Using loop number two as a reference and de- 

fining A = A„ and ft = ft«, we then express the response of a 

gradiometer axis, E(^,ö;R,t) = $/2sA,   to first order as 

nS,n;R,t) ~ r(s,n;R,t) + £.b(7f,t) (4a) 

where 

r(§,n;R,t) = (s.V)^.b(R,t) (4b) 

and 

6 = 
2s A 

1  ^  ^ 
- n, -n (4c) 

,>>* A 
To a first order approximation, then, the gradient term r(s,n;R,t) 

of the response depends on gradients at the point midway between 

loop centers, and the imbalance or error term, ö-b, is proportional 

to the magnetic field at the midpoint. 

10a 
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We represent gradients of magnetic fields in free space 

by a matrix G having elements g..(R/t), where 

'i] 
x. .'Mx. -b) (i,j = 1,2,3) (5a) 

in an orthogonal basis |x.| .  An element g.. represents the 
A 

gradient in a iirection x. of the component of magnetic field 

in a direction x..  Consequently, the relation 

s,n) -  /  g. .s.n ., 
L~J     ij i ] 

r(i 

i»j 

(5b) 

expresses the gradient in a direction s of the component of 

magnetic field in a direction n in terms of matrix elements 

in a basis | x. l , where s. and n. are components of the unit 

vectors s and n in the same basis 

By choosing a basis fixed at the point midway between 

loop centers with its x. axis aligned along the gradiometer axis 

s and its x, axis aligned along n X s, then, we obtain the expansion 

A A r(s,a^R,t) = n- g2,(R,t) + n3 g -(R,t) (6) 

for the gradient term of the response.  For coplanar pickup 

loops (transverse configuration), n3 vanishes and n2 = 1; for 

coaxial pickup loops (longitudinal configuration), n2 vanishes 

and n-, = 1.  A perfectly balanced gradiometer axis having a 

transverse configuration, then, measures skew elements of a 

gradient matrix, and one having a longitudinal configuration 

measures diagonal elements. 

The axis of our gradiometer has a transverse configuration, 

so that its response to ambient gradients that are sensibly 

11 
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constant over the distance between centers of the pickup loops 

(25 cm) is the sura of a transverse gradient at the point mid- 

way between pickup loops and an imbalance term that is pro- 

portional to the magnetic field at the midpoint, as expressed 

by the relation 

E(s,n;R,t) - g23{R,t) + 6-b(R,t) (7) 

The imbalance part of the response resulting from small 

differences in orientation aad area of the pickup loops, in 

effect, is the response of a magnetometer that measures the 

component of magnetic field in a direction 6 at the midpoint. 

The gradient part of the response is equivalent to a gradient 

of the field of a magnetic dipole located on a sphere of 

unit radius about the midpoint. 

/ 

A.  EQUIVALENT DIPOLE OF A GRADIENT FIELD 

Because a iuagnetic field in free space is both nondiver- 

gent and irrotational, its gradients are elements of a 

syraraetric matrix that has a vanishing trace.  A matrix that 

is both real and syraraetric is diagonal in an orthogonal 

basis coraprised of principal axes with diagonal elements 

or eigenvalues A,, X2,   and X...  Since its trace vanishes, 

A, + A2 + X3 = 0. 

We express gradie ^s at a point of a magnetic field, 

then, in terms of their eigenvalues, Ai, and eigenvectors 

Ä., which define directions of principal axes, by using 

the matrix product 

G = RAR, (8) 

12 



where the matrix G represents gradients in a fiducial basis 

|x. | .  The matrix R represents a rotation from the fiducial 

basis to a basis comprised of eigenvectors e., in which gra- 

dients are represented by the diagonal matrix /, having ele- 

ments A,, A_, and A_.  Components of eigenvectors in the 

fiducial basis form the columns of the matrix R; namely, 

r., = x.-e..  A real matrix representing a rotation is ik   i  k t-       ^ 

orthogonal, so that RR = RR = I, where tilde marks a trans- 

posed matrix and I is the unit matrix. 

By adding a magnetic dipole to a gradient field, we find 

that the relation 

F = R(A - R A,R )R (9) a d a *•*' 

gives gradients at a field point.  Here, A, is a diagonal matrix 

whose elements are eigenvalues of the gradients of the dipole 

field at the po^nt, and the matrix R specifies a rotation from 

principal axes of the ambient gradient field to principal axes 

of the dipole gradient field ^c the point.  Equation 9 tells 

as that gradients of an ambient field are equal to gradients 

of a dipole field at a point whenever R =1 and Aj=A.  At each ad 
point of an ambient field, then, we use the conditions R »I and a 
A,=A to define location, orientation, and moment of a dipole 

positioned on a sphere of unit radius about the point so that 

gradients of th » dipole field at the point are equal to ambient 

gradients.* 

Gradients at each point of an ambient field, then, are 

equivalent to the gradient field of a magnetic dipole located 

on a sphere of unit radius surrounding the point.  Because 

the sense of an eigenvector is indeterminate, the dipole has 

three images, so that gradients at a point of an ambient field 

are equivalent to the gradient field of a dipole located at 

* Equality of eigenvalues at a point is always possible because 
eigenvalues are ordered. A, A» A-, and their sum vanishes. 
The Appendix describes means of determining location, orienta- 
tion, and moment of an equivalent dipole from gradients of 
the ambient field. 
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any one of four positions on the sphere.  Radius of the sphere 
4 

is arbitrary provided the ratio m/r  is constant, where m is 

the moment of the dipole and r, its distance from the  field 

point.  Location, orientation, and moment of equivalent dipoles 

change continuously from point to point. 

B GRADIENT FIELD OF A MAGNETIC DIPOLE 

As illustrated in Figure 4, we specify location of a mag- 

netic dipole, m, with respect to the gradiometer basis  J^ 

in terms of polar angles 4) and 9 defining direction of the 

position vector r and specify its orientation with respect 

to the position vector in terms of the polar angle x and 

A 
azimuthial angle Q.  The basis  YW is defined so that the 

y., axip points along the position vector; the y2 axis, along 

r X m; and the y^  axis, along (r X nt) X r. 

As shown in the Appendix, the matrix 

G (g,x) ■ g 

cosx      0      sinx 

0      cosx      0 

sinx     0     -2COSX 

(10a) 

represents gradients at position r of a dipole fiel^ in the 

basis , where 

3u m -7 
a =  o_ and u  = 4n x 10 ' H/m. 
y    4     o 

4TTr 

(10b) 

Equation 10a tells us that longitudinal gradients result from 

the component of the dipole along r and that transverse gra- 

dients result from the component perpendicular to r.  None- 

theless, each component produces both longitudinal and trans- 

verse gradients in the gradiometer basis. 

14 



Three consecutive rotations represented by the matrix 

R(<t>,   6, Q) = ZU + Tr/2)X(9)Z(ß) (Ha) 

bring the gradiometer basis into coincidence with the basis 

, where 

Z{'ii)   = 

cos <p 

sin ^ 

0 

-sin ty 0 

cos i) 0 

0      0 

A 
and represents a rotation through an angle IJJ about the x3 
axis of the gradiometer basis and 

X(ij;) = 

1 

0 

0 

0      0 

cos ty     -sin ^ 

sin ty       cos ty 

(lib) 

(lie) 

and represents a rotation about the x, axis. 

Consequently, the matrix 

G U,   6, fi; g,x) = R<«# 9, ß)G (g,x)R(4>, 6, Q) 

represents gradients of the dipole field in the gradiometer 

basis.  We then find that 

Gx = g cos X [l - 3/2 A1 (4>, 8)1 

+g sinx [cos Q b2(<t>,   0) - sin Ü h^it,   9)1  , 

where I denotes the unit matrix, 

(12a) 

(12b) 

ii 
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A1((|)l 9) = 

A2(4), 9) « 

2    2 
2cos 4)sin 9 

2 
sin2(})sin 9 

cos(J)sin29 

-sin2())sin9 

cos2(})sin9 

-sin4)Cos9 

sin24)sin 9 
2    2 2sin (|)Sin I 

sin(t)sin29 

cos2(})sin9 

sin2(|)sin9 

cos(})COs9 

cos4)sin29 

sin4)sin29 

2cos 9 

•sin(l)Cos9 

cos(()Cos9 

0 

(12c) 

(12d) 

and 

A3((i), 9) 

cos (})sin29     (1/2) sin2(t)sin29 cos())COs29 
2 

(1/2) sin2(})sin29 sin (j)sin20 sin(J)COs29 

cos4)Cos29      sin(})Cos29 -sin29 

(12e) 

The first term of Equation 12b results from the component of 

the dipole along r, and the second term, from the component 

perpendicular to "r.  We see that each component produces both 

longitudinal and transverse gradients in the gradiometer basis. 

C.  GRADIENT RESPONSE 

From Equation 12b, then, we find that the relation 

_3 
g  ■ j q  cosx sincf) sin29 

+ g siny (cos^cos(t> cos9-sin^ sinty  cos29) 

expresses the gradient term of the instrument response in terms 

of the five parameters 0, 9, Ü,   x,   and g that specify location, 

orientation, and moment of a dipole.  Because gradients at a 

point are equivalent to the gradient field of a dipole located 

on a sphere of unit radius about the point. Equation 13 com- 

pletely specifies the gradient response. 

(13) 

11 
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The construct of an equivalent dipole furnishes a convenient 

transformation of the five independent elements of a matrix 

representing gradients of a magnetic field in free space to 

five parameters ((f), ö, ß, x» and 9) that provide ready means 

of describing the gradient response.  For example. Equation 

13 tells us that a dipole located along the ^, axis of the 

gradiometer basis ((() = 0 and 6 = TT/2) gives a null response 

whatever its orientation.  Moreover, oppositely located and 

oppositely directed dipoles (<!>-♦({) + IT, 6-»TT-0, and ft-*-Q) 

.give the same gradient response. 

The gradient field of a dipole represents gradients of a 

magnetic field at a point in free space even though the actual 

source of the field is not a dipole.  Because of the principal 

of superposition, separate equivalent dipoles represent gra- 

dients from distinct sources.  The gradient field of a dipole 

describing gradients resulting from a sum of distinct sources 

is simply the sum of fields of equivalent dipoles representing 

gradients from each source, but the dipoles themselves are not 

simply additive unless they are located colinearly.  Nonethe- 

less, fields of a sum of equivalent dipoles conveniently de- 

scribe contributions of distinct sources. 

D.  INSTRUMENT CALIBRA' rnN 

To calibrate the gradiometer, we use a current oscillating 

in a coil placed equidistant from the center of each pickup 

loop with its dipole moment parallel to the line joining centers 

of the pickup loops.  We face the plane containing pickup 

loops toward the coil to obtain a maximum response and Reep 

the distance from the midpoint of the gradiometer axis to the 

center of the coil much larger than both the spacing between 

centers of the pickup loops (25 cm) and The radius of the 

coil (21 cm). 
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I1 
The coil, in effect, is a dipole located along the x» axis 

of the gradiometer basis and directed parallel to the 5^ axis, 

so that ifi  =   3n/2, G = IT/2, Q  = 3Tr/2, and x = Tr/2.  The expression 

'23 

3y ni(t) 
o  

„  4 (14) 

obtained from Equation 13 then gives the gradient produced at 

the gradiometer, where m(t) is the dipole moment of the coil 

and r is its distance from the gradiometer.  Equation 13 also 

shows that misalignment of the coil and gradiometer adds terms 

of second order in angular deviations and so produces negligi- 

ble error for reasonably precise alignment.  Errors result 

largely from uncertainties in the distance of the coil from 

the gradiometer. 

By measuring current in the coil and output voltage of 

the gradiometer at several values of r, we find that a gra- 

dient of 1 nT/m gives an output voltage of 4.5 V + 15%.  Cali- 

bration is independent of frequency and of the quantum state 

of the SQUID sensor. 

We also use the dipole used for calibration to align the 

triaxial fluxgate magnetometer with respect to the gradiometer 

basis.  Turning the gradiometer about its axis until a null 

response is obtained aligns the plane containing pickup loops 

with the plane defined by the dipole moment of the calibration 

coil and the gradiometer axis.  Oscillating magnetic field 

components along the ^, and ^2 axes of the gradiometer basis 

then vanish, so we align corresponding axes of the fluxgate 

magnetometer to obtain null responses as well. 
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Section IV 

GRADIOMETER BALANCING 

Both mechanical and electronic means of balancing the 

gradiometer are available.  We balance mechanically by using 

micrometers on the top plate of the probe to move three small 

niobium disks mounted on slides near the top pickup loop. 

Because a superconducting disk distorts the magnetic field 

in its vicinity, movement of the disks adjusts the effective 

orientation ana area of the loop.  Axes of the disks are 

mutually orthogonal, so that movement of each disk, in effect, 

adjusts the corresponding component of the imbalance vector 

Because precision of disk movements is limited, however, 

we use the triaxial fluxgate magnetometer mounted on the top 

plate of the probe to provide vernier balancing electroni- 

cally.  We balance electronically by subtracting an adjustable 

fraction of the magnetic field components measured by the 

fluxgate magnetometer from the gradiometer response. 

To make mechanical and electronic balance adjustments, we 

rotate the gradiometer axis in the earth's steady magnetic 

field.  Because gradients of the earth's steady magnetic 

field are smallH10 pT/m), rotation in the earth's field fur- 

nishes a time varying field that is nearly uniform, so that the 

gradiometer response effectively results from imbalance alone. 

A.  BALANCING IN A UNIFORM MAGNETIC FIELD 

Rotating a gradiometer about an axis in a direction n 

in a uniform magnetic field, B, produces a response owing to 

imbalance of its pickup loops that is expressed in terms of 
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the angle of rotation 0,   by the relation 

"5-B = (B.ü) {Q-&   )   + Qx(Bxn)|«6 J o cosfi + 
->. A 
(BxQ) 6 sinSI o 

(15) 

where"? is the initial position of the imbalance vector 6. 
o r 

The imbalance vector is fixed to the gradiometer, so that 

6  depends on initial orientation of the gradiometer.  As is 

evident from Equation 15,, we define a fiducial basis using 

the vectors B and U. 

As before, we choose a right-handed basis fixed to the 

point midway between centers of the pickup loops with its 

"j^ axis along their line of centers and its x? axis normal 

to the plane containing pickup loops.  We denote components 

of the imbalance vector in the gradiometer basis by 6-,, 6~, 

and 6,. 

In our balancing procedure, the axis of rotation is 

vertical, and the earth's magnetic field provides an effec- 

tively uniform field.  We use two initial orientations of 

the gradiometer basis in order to make sequential and inde- 

pendent adjustments of components of the imbalance vector. 

First, we initially orient the gradiometer with the x3 

axis directed vertically upwards; the JL axis, northward; 

and the x, axis, eastward.  Rotating the gradiometer about 

its SL axis through an angle ß then gives the response 

6»B = -63Bsinß + (Ö^sin n+ 62cosn)Bcosß  , 

where ß is the local dip angle of the earth's magnetic field 

and B is its magnitude.  Equation 16 tells us that a cosine 

response corresponds to the 6- couponent of the imbalance 

(16) 
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vector and that a sine response corresponds to the 61 com- 

ponent.  The 6_ component determines a reference level of 

the sinusoidal response.  To nullify components 6. and 6- 

of the imbalance vector, we first adjust the niobium disk 

having its axis parallel to x, until rotation produces a 

cosine response and then adjust the disk having its axis 

parallel to ^ until rotation produces a flat response. 

Next, we initially align the gradiometer with the x^ 

axis parallel to the earth's magnetic field and the x« 

axis directed westward.  Rotating the gradiometer about a 

vertical axis through an angle Ü  then gives the response 

■^t.B =   (6,0036 + ö3sinß) Bsinß + f^sinSl 

-(6,sin3 - 6^cosß) cosfTJ Bcosß 
(17) 

Equation 17 tells us that a cosine response corresponds to 

components 6  and 6- of the imbalance vector and that a sine 

response corresponds to the 6» component.  To complete balanc- 

ing the gradiometer, then, we only adjust the disk having its 

axis parallel to it-  until rotation produces a flat response, 

because the first procedure nullifies components 6, and ö-. 

B.  LIMITS ON GRADIOMETER BALANCE 

Both limited precision of disk movements and mutual in- 

ductances between disks limit the balance attainable mechani- 

cally, and so prevent attainment of precisely flat responses 

during rotations.  Mechanical adjustments reduce components 
-5  -1* 

of the imbalance vector to values of the order of 10  m 

To reduce imbalance further, we electronically subtract 

a fraction of magnetic field components measured by the flux- 

* Balance of a gradiometer is also commonly expressed in terms 
of a common mode rejection ratio (CMRR) that is the magnitude 
of the imbalance vector multiplied by the distance between 
centers of its pickup loops.  For our gradiometer, an im- 
balance of 10-5 m""1 gives a CMRR of 2,5 ppm. 



gate magnetometer from the gradiometer response during rota- 

tions, after reaching the limit of mechanical adjustments. 

Combined mechanical and electronic adjustments reduce com- 

ponents of the imbalance vector to values of about 4 X 10 ' 
-1 m 

Further refinement of gradiometer balance presently is 

limited by hysteresis observed during rotation when the ira- 
-5  -i 

balance is somewhat less than 10  m  .  The record in Figure 

5 illustrates the effect.  The trace records gradiometer re- 

sponse during a clockwise rotation followed by a counter clock- 

wise rotation with the gradiometer axis vertical.  Rotations 

are made stepwise in sixteen increments of 22.5 , as shown in 

Figure 6, starting with the XL axis pointing northward.  Spikes 

in Figure 5 mark movements between incremental positions and 

result from eddy currents excited in aluminized Mylar layers 

used to insulate the helium reservoir.  Plateaus mark values 

recorded while dwelling at incremental positions.  As is 

evident, values recorded at incremental positions are not 

unique and depend on the sense of rotation; namely; the value 

recorded at a position during a clockwise rotation differs 

from the value recorded at the same position during a counter 

clockwise rotation. 

Figure 7 shows the hysteretic signature of the effect. 

The trace records response during a stepwise oscillation of 

the 'xL  axis about position 5 marked in Figure 6.  Oscillation 

begins with a clockwise movement of two increments from position 

5 to position 7, then reverses with a counter clockwise movement 

to position 5, continues with a counter clockwise movement of 

two increments to position 3, returns to position 5 with a clock- 

wise movement, and repeats the cycle thereafter.  As is evident 

in Figure 7, the value recorded at nosition 5 depends on the 

direction of approach; namely, the value recorded during a 

li 
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clockwise crossing differs from the value recorded during a 

counter clockwise crossing.  The difference depends on ampli- 

tude of the oscillation. 

We observe a similar hysteretic signature when oscillations 

are made with a crescent wrench taped to the top of the Dewar 

and so suspect that the hysteretic eftect results from ferro- 

magnetic contaminants in the vicinity of the pickup loops. 

Although hysteresis precludes further reduction of gradiometer 

imbalance, the residual imbalance is insignificant for our 

immediate purposes. 

Eddy currents excited in the aluminized Mylar insulation 

during rotations do not limit refinement of gradiometer balance 

but do require that rotations be made stepwise. Continuous 

rotation, in effect, averages values at spikes and plateaus 

and so is misleading for purposes of refining balance. The 

response resulting from eddy currents,E,is consistent with 

the description given by the relation 

E  = C — (B.l) = CBcosß A^ ) 
e   dt Vat/ 

sinfi (18) 

Where's is the earth's magnetic field; "A, the effective area 

of eddy current loops; C, a coupling constant; and Q is the 

angle of rotation, reckoned positive for a clockwise rotation. 

The vector representing effective area of eddy current loops 

is normal to the plane containing pickup loops.  Allowing 

for a difference in rates of movement between increment posi- 

tions. Figure 5 shows that spikes resulting from eddy currents 

are greatest at TT/2 and 3i\/2,   least at 0 and TT , and of opposite 

seise for clockwise and counter clockwise rotations, as described 

by Equation 18. 
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Gradients of the earth's magnetic field are a more 

fundamental limit on refinement of gradiometer balance.  Gra- 

dients of the earth's magnetic field are of the order of 10 pT/m 

and so give a response comparable to the response owing to im- 
_7 

balance when magnitude of the imbalance vector is about 5 X 10 

m  or less.  In the absence of the limit imposed by hysteresis, 

reduction of gradiometer imbalance below about 10  m  is 

limited by gradients of the earth's magnetic field. 

C.  BALANCING IN A NONUNIFORM MAGNETIC FIELD 

Because a matrix representing gradierts of a magnetic field 

in free space is symmetric, it is diagonal in a basis comprised 

of principal axes.  Transverse gradients vanish along principal 

axes, so that a perfectly balanced gradiometer having a trans- 

verse configuration gives a null response when its axis is 

aligned along a principal axis of an ambient gradient field. 

The Appendix describes both a means of determining directions 

of principal axes of a gradient field from values of its matrix 

elements measured in a fiducial basis and response of a per- 

fectly balanced gradiometer during rotation about an arbitrary 

axis. 

To refine balance of our gradiometer in the presence of a 

nonuniform magnetic field, then, we align its axis along a 

principal axis of the ambient gradient field and rotate it 

about its axis.  Because transverse gradients vanish along 

a principal axis, the response during rotation results from 

imbalance alone.  We then adjust components of the imbalance 

vector to obtain a flat response during rotation.  Precise 

determination of directions of principal axes, however, re- 

quires a finely balanced gradiometer, so we devise an iterative 

procedure. 
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We suppose that directions of principal axes of the ambient 

gradient field are known approximately.  For example, two prin- 

cipal axes of the earth's dipolar magnetic field lie in a ver- 

tical plane containing the magnetic field vector, and the third 

principal axis is normal to the plane.   If ambient gradients 

exceed about 10 nT/m, then we use the gradiometer itself to 

estimate approximate directions of principal axes, because 

magnitude of its imbalance vector without refinement is at 

most about 10  m  .  Rotating the gradiometer about its axis 

when it is aligned with the local magnetic field vector gives 

an estimate of the magnitude of ambient gradients, since the 

response owing to imbalance then vanishes. 

The relation 

q23in)   = (Y 13 + Y23)1/2 COs(Q + V 
(19a) 

with 

tanno = Y13/Y23 

gives the response owing to ambient gradients when the gradio- 

meter is rotated through an angle tt  about its axis.  Coeffi- 

cients Y-.3 and Y23 are elements of the matrix representing 

the ambient gradient field in the basis defined by initial 

orientation of the gradiometer.  If the gradiometer axis is 

aligned along a principal axis of the ambient gradient field, 

then Y-,3 and 7,3 vanish, so that the response owing to ambient 

gradients during rotation is flat.  If polar angles defining 

direction of the axis of rotation in a fiducial basis deviate 

by amounts A<j) and AO, respectively, from polar angles defining 

*The Appendix describes the gradient field of a magnetic dipole 
in terms of its eigenvalues and directions of its principal 
axes. 

(19b) 
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direction of the principal axis corresponding to eigenvalue 

A3 say, then 

Y13 sr 1/2 piAj - {2A1 + X3)cos2fp| sine (A*) (19c; 

and 

-1/2(2X1   +   A3)sin2f    (AO) 

Y23^ -1/2(2A1  +  A3)sin2H'psin0p(Act)) 

+ 1/2 £3A3  +   (2A1  +   A3)cos24'p]   (AS) 

(19d) 

where * , 0  and *  are Euler angles(defined in Figure Al) 

specifying a rotation from the fiducial basis to the basis 

comprised of principal axes and X,, A2, and A3 are corresponding 

eigenvalues. 

We choose a fiducial basis X.  with its X., axis directed 

vertically downwards, its X1  axis, northward, and its X2 axis, 

eastward.  To align the gradiometer axis with a principal axis, 

we start with the gradiometer basis coincident with the fiducial 

basis and first rotate the gradiometer through an angle 9 

about the "X, axis and then through an angle 4) about the X3 
axis, where the polar angles 4» and 9 approximately define 

direction of the principal axis in the fiducial basis.  We then 

rotate the gradiometer about its axis and mark the amplitude 

of its response.  We next make an incremental rotation 54) 

about the X^ axis and again rotate the gradiometer about its 

axis and mark th« amplitude of its response.  We continue 

making incremental rotations about th:. X3 axis followed by 

rotations about the gradiometer axis until we determine the 

polar angle 4, + 64) at which amplitude of the response is least. 
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With the gradiometer axis fixed at the polar angle $ + 6$, 

we carry out a similar procedure to determine the polar angle 

9 + <Se at which amplitude of the response is least and so 

locate the polar angles 4) + 6(j) and 9 + 60 defining direction 

of the principal axis more precisely. 

The response resulting from imbalance is sensibly constant 

for incremental changes ficfi and 6 9 in the polar angles, but 

the response resulting from ambient gradients changes markedly 

for small deviations of the axis of rotation from the princi- 

pal axis.  Nonetheless, imbalance eventually masks changes 

in amplitude of the response to rotation as the axis of rota- 

tion approaches the principal axis.  When incremental changes 

in polar angles defining direction of the axis of rotation 

produce imperceptible changes in amplitude of the response, 

we then adjust components 6, and ^ of the imbalance vector 

to reduce the response owing to imbalance, following a pro- 

cedure similar to that used in a uniform field. 

After refining 'he balance, we refine alignment of the 

gradiometer axis with the principal axis by again making in- 

cremental changes in polar angles until we determine the 

direction of the axis of rotation for which amplitude of the 

response is least.  We then again refine the balance and re- 

peat the procedure until further refinements are imperceptible. 

The iterative procedure affords means of reducing components 

6, and Sj  0*  t^e in^alance vector.  To reduce the 63 component, 

we rotate the gradiometer about itr>  "x, axis through an angle 

X after aligning its axis with the principal cixls.  The relation 

g23(x) = 1/2 l3X3 + (2X1 + A3)cos2y ] sin2x (2 0) 

1 
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gives the response resulting from ambient gradients.  The 

response resulting from imbalance, however, is sinusoidal 

with respect to x rather than 2x.  Consequently, we adjust 

the <53 component of the imbalance vector during rotation 

until the response is proportional to sin 2x. 

Because our present means of rotating the gradiometer only 

provides for rotation about a horizontal and a vertical axis, 

the suggested procedure for balancing in a nonuniform ambient 

magnetic field is as yet untried. 
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Section V 

INSTRUMENT PERFORMANCE 

Past reports (Clarke, 1974; Wynn et al., 1975; Zimmerman 

and Frederick, 1971) have specified performance of super- 

conducting magnetic gradiometers in terras of a noise level 

without regard to spectral shape.  Recent measurements (Clarke 

et al., 1975) of noise spectra of a superconducting quantum 

interference device (SQUID), however, show that their noise 

power density increases approximately in inverse proportion 

to frequency as frequency falls below about 1 Hz.  Moreover, 

fluctuations of ambient temperature and pressure and of the 

earth's magnetic field drive fluctuating magnetization currents 

and eddy currents in materials within the Dewar that generate 

noise whose power density characteristically increases with 

decreasing frequency as well.  Characterizing instrument 

performance in terms of a noise level, then, is inadequate 

in the frequency range of interest (f^-l Hz) . 

In what follows, we first present spectral data in the 
-4 frequency range 5 X 10  Hz to 20 Hz that characterize per- 

formance of the instrument, which is designed insofar as prac- 

tical to eliminate sources of noise driven by fluctuations of 

ambient temperature and pressure and of the earth's magnetic 

field, and demonstrate that its performance in a magnetically 

quiet environment is limited by noise of its SQUID sensor at 

frequencies below about 0.1 Hz. We then compare performance 

demonstrated using a torodial point-contact type SQUID sensor 

with performance expected using a chin-filra dc type SQUID, in 

order to mark limits on enhancing instrument performance. 

Finally, we delineate improvements in instrument design. 
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A, GRADIOMETER NOISE SPECTRA IN A MAGNETICALLY OUIET ENVIRONMENT 

To characterize performance of the gradiometer in the fre- 
_4 * 

quency range 5 X 10  Hz to 20 Hz, we made a number of records 

of its output, ranging from 12 to 24 hours in duration, for 

a variety of ambient conditions during an observational period 

of several weeks at the La Posta Astrogeophysical Observatory, 

which is located in the mountains about 70 miles east of San 

Diego, California, at an altitude of 1188 m MSL.  Coordinates 

of the observatory are 116  25' 6" west longitude and 32  40' 

39" north geodetic latitude (Bleiweiss and Wefer, 1975).  We 

present spectral data based on a five hour long segment of a 

record that is representative of the lowest instrument noise 

consistently observed. 

Figure 8 shows the spectra] power density in the frequency 

range 5 X 10~  Hz to 2 0 Hz characterizing performance of the 

instrument during a quiet period observed at night.  We esti- 

mate the spectrum below 0.1 Hz using a standard fast Fourier 

Transform algorithm and average ten successive estimates made 

from 1/2 hour segments of the time series.  We obtain spectral 

data at frequencies above 0.1 Hk using a real-time spectrum 

analyzer having an averaging capability. 

For frequencies below 0.1 Hz, we assume a spectrum of the 

form S(f) - S(f )(f /f)Y and then use a least squares criterion 
o  o 

to fit averaged spectral data to a straight line in logarithmic 

coordinates to obtain values of y  and S(fo).  Values corresponding 

to the spectrum shown in Figure 8 are y  =  1.3  and S(fo) = 0.002 

(pT/m) /Hz at fo = 1 Hz, for f<0.1 Hz Spectral powor densities 

* We use a low-pass filter having its half-power point at 0.3 
Hz to preclude aliasinq anc" digitally record on magnetic 
tape once a second to obtain data at frequencies below 0.1 Hz. 
We obtain spectral data at frequencies above 0.1 Hz using a 
real-time spectrum analyzer having an averaging capability. 
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in the frequency range 0.1 Hz to 20 Hz correspond to a white 
2 

noise level of 0.03 (pT/m) /Hz.  Additional estimates made 
2 3 near 10  Hz and 10  Hz correspond to the same white noise 

level• 

We present spectra characterizing instrument performance 

during quiet times in order to demonstrate that the inherent 

noise spectrum of the gradiometer is in practice limited by 

the intrinsic noise spectrum of the SQUID sensor alone at 
* 

frequencies below 0.1 Hz.  Data  points in Figure 9 depict 

the spectrum of intrinsic noise of a torodial, point-contact 

type SQUID having the same design as that used in the gradio- 

meter.  The solid line delineates the spectrum of gradiometer 

noise shown in Figure 8.  Figure 9 shows that the spectrum 

of gradiometer noise closely approaches that of the SQUID at 

frequencies below 0.1 Hz.  Parameters characterizing the form 

of the SQUID spectrum have the values y *  1.1  and S(f ) = 2.4 
-3      2 X 10  (pT/m) /Hz at f = 1 Hz as compared to the values y 

«1.3 and S(f ) - 2.1 X 10~3(pT/m)2/Hz at fo = 1 Hz of the 

gradiometer s; -»ctrum. 

At frequencies above 0.1 Hz, however, the gradiometer noise 

level is appreciably higher than the SQUID noise level.  The 

increase in gradiometer white noise over that of the SQUID 

largely results from Johnson noise coming from the normal 

metal shield in the transformer.  We expect the shield to 

increase the noise level by a factor of two or so, which is 

comparable to the observed increase of nearly a factor of 

four.  Without an rfi transformer, we would expect to attain 

a white noise level limited by intrinsic white noise of the 

* Data presented in Figures 9 and 10 are provided by courtesy 
of John Clarke and his research group at the University of 
California, Berkeley, California. 
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SQUID sensor.  Presuming a maximum flux ratio of (4) /$   ) 
_3 s  p n 

= 4.52 X 10   without an rfi transformer (obtained from 

Equation lb with K  = 1), then, we would expect a white noise 
-3      2 level for the gradiometer of about 10  (pT/m) /Hz, which is 

comparable to the noise level of 3 X 10  (pT/mi/Virz' reported 
by Wynn et al., (1975) that largely results from intrinsic 

noise of their sensor. 

Although intrinsic noise of the SQUID sensor dominates 

the noise spectrum of the gradiometer below 0.1 Hz during 

quiet observational periods, we observe occasional increases 

in slope and level of spectra below 0.1 Hz that apparently 

are associated with semidiurnal effects.  We expect to charec- 

terize sources of noise driven by fluctuating ambient condi- 

tions by spectrally analyzing fluctuations of ambient tempera- 

ture and pressure and of the earth's magnetic field recorded 

at the field site. 

B, INSTRUMENT IMPROVEMENT 

Because intrinsic noise of its SQUID sensor limits instru- 

ment performance, replacing the torodial point-contact type 

SQUID in the instrument with a thin-film dc type SQUID (Clarke 

et al., 1975) is an immediate means of enhancing instrument 

performance.  Measurements of noise spectra of the two types 

of SQUID sensors show that spectral density of the thin-film 
2 

dc type, in units of <I>o/Hz, is appreciably smaller than spec- 

tral density of the torodial point-contact type at frequencies 

below about 0.1 Hz (Clarke, personal communication, 1975). 

Moreover, self-inductance of a thin-film dc type SQUID is about 

1 nH compared to 0.05 nH for a torodial point-contact type. 

Equation lb then tells us that coupling of flux to a thin-film 

dc type sensor is greater than coupling to a torodial point-contact 

type sensor, in the same superconducting circuit.  Namely, equi- 

valent noise energy in the pickup loops, 4) /L , is proportional 
XT \r 



to noise energy of the SQUID sensor, 4) /L , for fixed values 
s  s ^ 

of the coupling coefficients K  and K .  The ratio $  /L  pro- 
S u. So 

vides a figure-of-merit for comparing performance of SQUID 

sensors (Classen, 1975). 

Data points in Figure 10 depict the spectrum of intrinsic 
2 

noise of a thin-film dc type SQUID in units of $ /Hz marked 

on the right hand coordinate scale.  The light dashed curve 

delineates the spectrum of intrinsic noise of a torodial 
2 point-contact type sensor, m units of $ /Hz, as depicted by 

data points in Figure 9.  The solid line marks the spectrum 
2 of inherent noise of the gradiometer in units of (pT/m) /Hz, 

marked on the left hand coordinate scale, as depicted by data 

points in Figure 8.  The heavy dashed curve marks the spectrum 

of inherent noise expected of a gradiometer operating with a 

thin-film dc type SQUID.  We obtain the expected gradiometer 
2 

noise spectrum in units of (pT/m) /Hz from the spectrum of 

intrinsic noise of a thin-film dc type sensor in units of 
2 -3 $ /Hz by using the conversion factor 1.56 X 10   $ /(pT/m), 

which accounts for the change in self-inductance of the SQUID 

in the superconducting circuit. 

-3 ^t frequencies below 10  Hz, then, intrinsic noise of 

the t..in-film dc type SQUID limits expected performance of 

the gradiometer, and at frequencies above 10  Hz, Johnson 

noise from the normal metal shield in the rfi transformer 

limits performance.  Figure 10 shows that the expected en- 

hancement of instrument performance is substantial at fre- 

quencies ! .alow about 0.1 Hz.  For example, in the frequency 

band from 0.001 to 0.01 Hz, RMS instrument noise is reduced 

from 0.17 pT/m to 0.017 pT/m, a tenfold enhancement of per- 

formance. 
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We suggest two improvements in instrument design — one 

trivial and the other substantial.  First, scoring aluminized 

Mylar layers wrapped around the interior vessel of the Dewar 

reduces strength of eddy currents excited in the superinsula- 

tion.  Second, a triaxial superconducting magnetometer should 

be incorporated at the midpoint of the gradiometer axis both 

to provide nore accurate means of balancing and aligning the 

gradiometer, and to afford measurement of the magnetic field 

as well as its gradients at a point. 
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Section VI 

TECHNIQUES FOR SUPPRESSING NOISE FROM NEARBY MAGNETIC OBJECTS 

Fluctuating gradients of magnetic fields resulting from 

ionospheric currents are too small to be directly observed 

at the ground.  Nonetheless, ionospheric currents excite 

magnetization and eddy currents in magnetic objects near a 

gradiometer and so indirectly produce local, fluctuating 

gradients.  Moreover, objects magnetized by the earth's 

magnetic field produce sharp, steady gradients in their 

vicinity.  Slight, irregular movements of a gradiometer near 

magnetic objects, then, produce gradient fluctuations as 

we11.* 

Fluctuating gradients owing to nearby magnetic objects 

can mask ambient gradient fluctuations of interest.  Con- 

sequently, we consider techniques for suppressing gradient 

fluctuations resulting from small, irregular movements of 

a gradiometer relative to a steady gradient field and from 

fluctuating magnetization currents. 

As we have shown, gradients of a magnetic field at a 

point in free space are equivalent to the gradient field of 

a magnetic dipole loc.tted on a sphere of unit radius about 

the point.  Changes in location, orientation, and moment of 

an equivalent dipole then describe gradient fluctuations owing 

to magnetic objects.  Two techniques for suppressing fluctua- 

tions are available:  (1) aligning the gradiometer to obtain 

a null response and (2) using a magnetic dipole to cancel 

gradients of an equivalent dipole. 

*  Because of residual gradiometer imbalance, irregular move- 
ments in a uniform magnetic field also produce gradient 
fluctuations, but the fluctuations are comparitively negli- 
gible for ambient gradients exceeding 10 pT/m. 
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A.  SUPPRESSION OF NOISE FROM IRREGULAR MOVEMENTS 

Small displacements of a gradiometer in a steady gradient 

field produce small changes in location, orientation, and 

moment of the equivalent dipole describing gradients of the 

ambient field in the neighborhood of the gradiometer.  Changes 

in location result both from virtual rotations of the dipole 

accompanying small displacements at fixed gradiometer orien- 

tation and from actual gradiometer rotations, but changes in 

orientation and moment result from displacement alone. 

From Equation 12a that gives gradients in a gradiometer 

basis in terms of the gradient field of a dipole, we find that 

the relation 

G   + 6G  = R R, (G   + 6G )1Ltr xo    x   o o yo    y 6 o 
(23a) 

expresses gradients in the gradiometer basis following a small 

displacement from an initial point marked by subscript zero, 

where 

6Gy = fGy° + 6xGy(go' xo + */2) (23b) 

The matrix R^ represents an infinitesimal rotatio that we 

express in terms of angular deviations in location and orien- 

tation of the dipole by the sum 

R6 = I + 6ecosfioex - (6(l)sin9ocosao + 6esin^o)ey 

+ i 6fi + (S(Mcos8o-sin0osinfio) I 
(23c) 
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where 

0 0 0 

0 0 -1 

0 1 0 

e = 

0  0  1 

0  0  0 

-10  0 

, and 

0-10 

10 0 

0  0  0 

{23d) 

From Equation 23a we then find that th3 relation 

6G     =  ^ G       +   6xG   (())   ,   6   ,   fi   ;   g   .   x     +  ir/2) x       g      xo A  x  Yo      o      o      o    Ao o 

+ (6naineocoa*0 - «Osin^) (exGxo - Gxoex) 

+ (69cos(() + SfisinB sin* ) (e G  - G e ) v    To        o  ro  y xo   xo y 

+(6* + 6^coseo)(c2Gxo - GXOEZ) 

(24) 

gives first order changes of gradients in the gradiometer basis 

following a small displacement in a steady gradient field, which 

is represented by the matrix G  at the initial point.  Equation 

24 shows that changes in gradients are proportional to the 

initial values represented by the matrix G  . 

To suppress gradient fluctuations resulting from irregular 

motions, then, we first judiciously choose initial orientation 

of the gradiometer basis with respect to the equivalent dipole. 

We align the gradiometer so that the equivalent dipole lies 

along the £, axis with its axis in the plane containing pick- 

up loops, which is normal to the x- axis of the gradiometer 

basis.  Namely, we take ^ ■ 0, eo = TT/2, and ^o = TT/2, SO 

that 

G  = g xo  ^o 

-2cosx( 

0 

sinx« 

0 

cosx 

sinx 

0 

cosx. 

o 
(25) 
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Slight deviations in initial alignment give fluctuations of 

second order during irregular motions and so are negligible. 

Gradient changes resul'-.ing from small displacements or 

rotations from the initial orientation are then given by the 

expression 

6G  = ^G  + 6XG'  + 6fi(e G   - G  c ) 
XO X XO XO X 

+ (Se(e G  - G  e ) + &±{e   G       - G  e ) / v y xo   xo y    vv z^xo   xo z; 

where 

(26a) 

G 
'o 

2sinx( 

0 

cosx 

0 

-sinx( 

0 

cosx( 

0 

•smx AQ J 

(26b) 

e G  -G  e = q x xo  xo x yo 

0 

-sinx( 

0 

-sinx.  0 

o 
o 

0 

0 

(26c) 

E G  -G  c = q 
y xo xo y ^o 

2sinx^ 

0 

Scosx, 

0   3cosx 

0     0 

C  -2sinx o 

(26d) 

and 

£ G -G  e ■ q z xo xo z ^d 

0 

-3cosx( 

0 

-3cosx„  0 

0 

sinx. 

sinx. (26e) 

As a result, we see that changes in the transverse gradient, 

g2V measured by the gradiometer result from effective rota- 

tions about the gradiometer axis alone; namely,* 

The same result is obtained by differentiating Equation 13 
that gives the gradient response m terms of parameters 
specifying location, orientation, and moment of an equivalent 
dipole. 
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6g23 = 64)g0 sinxo 
(27) 

Magnitude of a gradient fluctuation is then the product of 

an effective angular deviation and a transverse gradient 

resulting from the component of the equivalent dipole along 

the gradiometer axis (the x^ axis).  The effective angular 

deviation 6$   is a sum of an angular deviation 64)vowing to 

virtual rotation of the equivalent dipole accompanying dis- 

placement and an actual angular deviation 6(J)a owing to rota- 

tion of the gradiometer basis. 

To suppress gradient fluctuations resulting from effective 

rotations about the gradiometer axis, we position a dipole 

along the £, axis of the gradiometer basis with its axis 

parallel to the 'x_ axis and adjust its moment so that it can- 

cels the component of the equivalent dipole along the x3 axis. 

Specifically, we position the dipole so that $  = 0» eo '^ 7T//2' 

R = ^TT/2, and x  = v/2  and adjust its moment so that  go = go 
sinx •  Changes in the transverse gradient measured by the 

gradiometer that result from small displacements in the steady 

gradient field of the dipole are then expressed by the relation 

6g23 = -64) gosinxo , 

where 64) = 6^v + &$     • 
(28) 

Consequently, small displacements in the steady ambient 

field with the cancelling dipole in position give gradient 

changes expressed by the sum 

6^23 + 6g23 =: (5V 6*v)gosinx o 
(29) 
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Although angular deviations owing to actual rotation of the 

gradiometer are the same for both the equivalent dipole and 

the cancelling dipole and so cancel, angular deviations owing 

to virtual rotations accompanying displacement differ to the 

extent that curvature of the ambient field deviates locally 

from curvature of the cancelling dipole field. 

Because we can position a dipole used to cancel gradients 

at a point at different distances from the point by adjusting 

its moment*, we can adjust the difference in angular deviations 

owing to virtual rotations accompanying small displacements. 

We place the dipole close to the point of cancellation, if the 

equivalent dipole representing the ambient gradient field 

rotates markedly during a small displacement, and far from 

the point, if it rotates slightly.  Namely, we choose the 

distance from the point of cancellation to make curvatures 

of the dipole and ambient magnetic fields comparable. 

Although initial misalignment of the cancelling dipole 

gives gradient fluctuations of second order in angular devia- 

tions and so is negligible for reasonably precise alignment, 

small displacements and/or rotations of the cancelling dipole 

itself relative to the ambient field produce additional gra- 

dient fluctuations of first order and so degrade its effective- 

ness.  Fluctuations of the moment of the cancelling dipole, 

however, produce gradient fluctuations of second order.  To 

be effective then, positioning of a dipole to cancel ambient 

transverse gradients must be steady with respect to the ambient 

field and reasonably precise, but its moment may fluctuate. 

Ideally, a cancelling dipole should be rigidly fixed to a 

magnetic object producing a local gradient field. 

* The ratio m/r is constant. 
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B.  SUPPRESSION OF NOISE FROM FLUCTUATING MAGNETIZATION 

In the absence of magnetic objects, the ambient magnetic 

field. B(t), is effectively uniform and comprises the earth's 

steady magnetic field, 15 , and a small fluctuating magnetic 

field, 'b(t), resulting from electric currents in the iono- 

sphere.  A magnetic object distorts the ambient field and so 

produces steady gradients of the magnetic field in its vici- 

nity as well as gradients that fluctuate as the uniform am- 

bient field fluctuates.  An object having a large magnetic 

permedbility, for example, warps the surrounding magnetic 

field until resulting field lines are nearly normal to its 

surface. 

Gradients of the magnetic field in the vicinity of a 

stationary magnetic object fluctuate as the undisturbd am- 

bient field, which magnetizes the object, chanJ ?M in strength 

and direction in response to ionosphere currents.  Magni- 

tudes of gradients are proportional to the strength of the 

ambient field divided by a characteristic length o+' in object 

and decrease with distance from an object as a      of its 

characteristic length divided by distance. 

For example, a spherical iron shell magnetized by a uni- 

form magnetic field, B(t), produces an induced magnetic field 

outside the shell that is described by the field of a magnetic 

dipole located at the center of the sohere.  The dinole points 

alona the uniform magnetizina field, and its moment m(t) is 

given bv the expression 

3 
Ä(t) - ^ 

6 
1 -  ^- (S RJß(t) o 

(30a) 



where 

6 = 3 + x 
l+(3/2x) 

HerQ, R  is the outer radius of the shell; R., its inner radius; 

and x its maanetic susceptibility.  Because maanetic suscepti- 
bility of iron is large (x~1000) , Tfl(t) = 4TrRoB{t). 

Gradients of the magnetic field surrcunding an iron sphere, 

then, are everywhere described by the gradient field of a mag- 

netic dipole that is fixed at the center of the sphere and 

changes its direction and moment in response to changes in 

direction and strength of the uniform ambient magnetic field. 

The equivalent dipole representing gradients at each point of 

the field is the actual dipole and so lies along a radial 

vector emanating from the center of the sphere. 

(30b) 

Consequently,   we  find  from Equation  13  that  the  transverse 

gradient measured by  the  gradi.-»meter at a position defined by 

a  radial  vector f  is expressed  as 

q0-(f,t)   =  g(t) | sinx (t)   cosfi(t)cos(t>cos9   -   sinfU t) sin(J)COs2e 

■^cosx (t) sin4)sin20 [     , 
(31a) 

where 

g(t) = ^(T) 
(31b) 

X(t) and Q(t) specify direction of the dipole axis with respect 

to the radial vector "f, and $ and 9 specify direction of the 

radial vector in the gradiometer basis.  Equation 31a tells us 
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that aligning the ^ axis of the gradiometer basis along a 

radial vector U = 0 and 0 = TT/2) gives a null response what- 

ever the dipole orientation an  ^o completely suppresses 

noise from fluctuating magne .  :ion currents in the sphere. 

Slight misalignment of the gradiometer, however, gives the 

response 

Ag23?,t) = g(t)8inx(t) |A(})Sinn(t)-Aecosn(t)] , (31c) 

where A^ and A9 specify misalignment of the x^ axis and radial 

vector r. 

Nonetheless, the fluctuating part of the earth's magnetic 

field is much smaller than the steady part, so that 

g(t) = g0 + 5g(t), with 5g(t)/g0 = b^tl/E^ 

(? X B )   (B X bv (t)) 
X(t) = X0 + 5x(t) , with 6x(t) 

o o 

B sinx o   o 
B. 

(32a) 

(32b) 

and 

Q(t) =  Ü    +  6ß(t)# with 6n(t)sinx0 = 
(f x 8o) \it) 

B^sinx^    B^ o   o     o 

(32c) 

He re, y  and ß give the direction of tl with respect to t, Ao     o o 

t (T) ' (32d) 

b^t) = 
Bo.b(t) 

B 
B
0 ' 

(32e) 

I 
43 



I 

which is the component of the fluctuating part of the field 

parallel to B and 

t     X o X B 
5^(t) =  ^  

B 
(32f) 

which is the component perpendicular to B .  Consequently, 

allowing for slight misalignment, Equation 31c shows that gra- 

dient fluctuations resulting from fluctuating magnetization 

currents in an iron sphere are of second order and so negli- 

gible when the x, axis of the gradiometer is aligned along a 

radial vector. 

For an intricately shaped object, we surmise that an equi- 

valent dipole describing gradients at a point near the object 

changes not only its orientation and moment but also its loca- 

tion as strength and direction of the earth's magnetic field 

fluctuates.  Gradient fluctuations resulting from fluctuating 

magnetization currents are then, in effect, equivalent to 

fluctuations resulting from irregular motions.  Fluctuating 

magnetization currents in an intricately shaped magnetic 

object produce virtual rotation of an equivalent dipole. 

Aligning the gradiometer so that the equivalent dipole 

determined from the steady gradient field of a magnetic object 

lies along the x. axis of the gradiometer basis with its axis 

in the plane containing pickup loops nullifies gradient fluctua- 

tions resulting from fluctuations of the dipole orientation 

and moment produced by fluctuations of the earth's magnetic 

field. Virtual rotations of the equivalent dipole produced by 

fluctuations of the earth's magnetic field then give gradient 

changes expressed by the relation 



6g-- = 6())  g sinv -'23       ,rm-'n    An  ' vin o 'O 
(33) 

where ö*   is the apparent angle of rotation about the gra- vm 
diometer axis 
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Section VT I 

PRELIMINARY TESTS OF NOISE SUPPRESSION TECHNIQUES 

Our field tests* of noise suppression techniques are 

necessarily preliminary because the wooden gimbal used to 

orient the gradiometer provides only vertical and horizontal 

axes of rotation and so both restricts gradiometer orienta- 

tion (three axes of rotation provide unrestricted orientation) 

and limits precision of alignment to about 0.1 radian or a 

few degrees.  We report results of tests of two techniques: 

(1) use of a current in a coil approximating a magnetic di- 

pole to cancel the steady gradient field at a point near a 

magnetic object and (2) aligning the gradiometer to suppress 

gradient fluctuations from fluctuating magnetization currents 

in an iron sphere.  In each case, we first summarily describe 

the technique, give a detailed procedure, and then present 

results of preliminary tests. 

A.  CANCELLING STEADY GRADIENTS 

To cancel steady gradients at a point near a magnetic 

object, we place a coil at the position of an equivalent 

dipole corresponding to gradients at the point and adjust 

current in the coil to nullify the gradients.  We determine 

positions of equivalent dipoles by measuring gradients in a 

fiducial basis, calculating corresponding eigenvalues and 

eigenvectors, and transforming to a description in terms of 

location, orientation, and moment of associated equivalent 

dipoles.  After placing the coil at a position determined 

from gradients measured in the fiducial basis, we drive an 

cscillating current in the coil and adjust its location and 

We do tests at the La Posta Astrogeophysical Observatory 
located in the mountains about 70 miles east of San Diego, 
California.  Coordinates of the observatory are 116° 25' 6" 
west longitude and 32° 40' 39" north geodetic latitude 
(Bleiweiss and Wefer, 1975). 
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orientation to obtain a null response at the gradiometer with 

the gradiometer basis aligned along principal axes of the 

ambient gradient field.  We ^-hen tilt the gradiometer away 

from principal axes and adjust a steady current in the coil 

until rotating the gradiometer about its axis gives a null 

response. 

1.  Procedure 

To determine the five independent steady gradients y.. 

defined in a fiducial basis |z.( , we rotate the gradiometer 

about each one of three axes forming a linearly independent 

triad.  Rotating the gradiometer through an angle Q.  about its 

axis gives the sinusoidal response expressed by the relation 

g«^ = U cos Ü V sin fi (34a) 

Amplitudes U and V depend on initial orientation of the gradioreter 

basis.  Measuring amplitude and phase of the sinusoidal re- 

sponse developed during a complete rotation determines the 

coefficients U and V corresponding to an initial orientation. 

For the three axes of rotation, we choose the ^^ axis of 

the fiducial basis and two axes defined by the two sets of 

polar angles (6,11/2) and (6,0) with respect to the fiducial 

basis.  When the gradiometer basis is initially coincident 

with the fiducial basis, coefficients U and V are equal to the 

gradients Yoo anc* Yio» respectively.  Rotating the gradiometer 

about its axis then, in effect, measures the gradients Y^-J 
anci 

Yi-i-  When the axis of the gradiometer is aligned with an axis 

of rotation defined by polar angles 6 and TT/2 , the coefficients 

are given by the relations 

U = Y23COse - 2(Y22-
Y33)sin2e (34b) 
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and 

V = Yi-iCosS - Y-i-jSinO (34c) 

Rotating the gradiometer then gives a measure of y-io and the 

difference (YTT
-
^!!^' once Ypo and y,- are determined.  Finally, 

when the gradiometer axis is aligned along an axis of rotation 

defined by polar angles 6 and 0, the coefficients are qiven 

by the relations 

U = y-^cos®   + Y-io8^11^ (34d) 

and 

V = Y-1TCOS28 + y{Y-.-J-YTO) sin2e (34e) 

Rotating the gradiometer then gives a measure of the difference 

(Yi ■»"Yo's) i once Ypo» Y-IT» ^nd Y-I? ^^e determined.  Because the 

sum of longitudinal gradients vanishes, the three rotations give 

a measurement of the independent gradients Y-i-i» YTT/ Y-I?' Y-i-w 

and Yo? defined in the fiducial basis. 

From the five gradients, we determine three eigenvalues 

(A,>A2»A-), corresponding eigenvectors (e,, e„, £~),   and 

three Euler angles {$>,   0, 4') that specify a rotation R (<I>, 

0, f) from a fiducial basis to the basis comprised of prin- 

cipal axes defined by the eigenvectors*.  Namely, we establish 

the relation 

i, 

G = R AlT 
P  P 

thut gives the matrix G describing gradients in the fiducial 

basis in terms of R and the diagonal matrix A whose elements 

are the eigenvalues A,, A«, and A^.  Gradients in the fiducial 

basis, however, are also equal to gradients of the field of a 

magnetic dipole. 

* The Appendix delineates calculation of eigenvalues, eigen- 
vectors, and Euler angles from gradients of an ambient field. 
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The relation 

G = RU, 0, fi)Y'(a) AYU.IRU, 6, tt) (35a) 

gives gradients of the field of a magnetic dipole located 

with respect to a fiducial b^sis by polar angles (j) and 6 

defining direction of its position vector ? and oriented with 

respect to the position vector bv the azimuthal anqle Q and 

polar angle y, as defined in Figure 4.  The matrix R(4>, 0, Q) 

represents three consecutive rotations, as defined by Equation 

11a, that, brinq the fiducial basis into coincidence with the 

basis yi defined in Fiaure 4. and 

Y(a) = 

cosa 0 -sma 
0 1 0 

sina 0 cosa 

A 

(35b) 

and represents a rotation through an angle -a about the y2 axis 

that brings the basis  y.  into coincidence with principal axes 

of the gradient field of the dipole when tan 2a = (2/3) tanx. 

Eigenvalues of the gradient field of a dipole equal eigenvalues 

of an ambient gradient field when 

tanx = ^-^ '-      / 0<X<T (35c) 

and 

g = 
Mo3m 
„  4 
4iTr 

1/2 

^2  + Xl A3 
(35d) 

where m is the moment of the dipole and r, its distance from 

the field point. 
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» Consequently, Equations 35 and 35a tell us that gradients 

of a dipole field equal gradients of an ambient field when 

location U, 6), orientation (x, Q), and moment of the dipole 

are determined by the relation 

R (*, 0, f) = PU, e, ß)y(a) (36a) 

together with Equations 35c and 35d.  Polar angles *  and 9 
^     m     :n 

specifying direction of the dipole axis in the fiducial basis 

are determined by the relation 

RU, 0, n)Y(x) = Z(4)m + Tr/2)X(em), (36d) 

where matrices Z(^) and X(i|;) are given by Equations lib and 

lie. 

From Equations 35a and 36a, we then find that gradients of 

the field of an arbitrarily positioned dipole are expressed in 

the basis comprised of principal axes of an ambient gradient 

field by the relation 

T = Y R RYA,YRR Y 
e e  d  e e (37a) 

where elements of the diagonal matrix A, are eigenvalues of the 

gradient field of the dipole and subscript e marks matrices 

corresponding to an equivalent dipole.  If a dipole is near 

the position of an equivalent dipole, then R = R R~, Y =Y,Y1 

and Ad = (g/ge)(A + 6A) , so that 
e 6 ' 

•N-*  ^N-- 

F S (g/g )Y R^Y (A + 6A)Y Y R YQ eeoöe       eooe (37b) 
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where the ratio g/g  gives magnitude of gradientJ o^ the di- 

pole field relative to ambient gradients and 6A is proportional 

to 6x- 

The matrix product Y ^^^e  represents an infinitesimal 

rotation that we express in terms of angular deviations in 

location and orientation of the dipole by the sum 

VWe =  1 +  6K  F-x + % ey + 6^ ez 
(37c) 

where 

6iJ;  = 54)(cos6 sinae+sineesinf2ecosae) 

+ öecosfi cosa  + Silsina       , e   e        e 

(37d) 

6ij;    =  64>8in8 sinfl    -  6esinfl -fio     , (37e) 

&^     =  6(|)(coseecosae  -   sineesinQesinae) 

-6ecosfi  sinot     +  ößcosa       , e e e 

(37f) 

elementary matrices z^,   ey, and ez are given by Equation 23d, 

and we find from Equation 36d that 

5n = («♦ -6*)co8e +6em8inU -* )Bin 
m m 

{37g) 

and 

6x = 66 m 
rcoseecos^esin{<j)me-<De)-sinnecos(*me-({.e)J 

-6esinf2 + (64) -6(t))sine cosfi m 

(37h) 



Consequently, we find from Equation 37b that 

F = (g/g )(A + 6A + ST)      , (38a) 

and, to first order in angular deviations, that the relation 

(g/ge)6T = (g/ge) (A1-A2)6^ 

(A1-A2)6i|;z  (A3-A1)6^ 

0       (A2-A3)6^ 

_(A3-A1)6lJ;   (A2"X3)6lJ;x 

{38b) 

gives transverse gradients in the basis comprised of principal 

axes of an ambient gradient field.  Specifically, the exores- 

sion 

g23 = (g/ge)(A2-A3)^x (38c) 

gives response of the gradiometer when the gradiometer 

basis coincides with the basis comprised of principal axes 

of an ambient gradient field, and the expression 

g23 = (g//ge)  (A2-A3) 6^xcos^ - (Xj-X^fito sin^ 

gives response when the gradiometer is rotated through an 

angle t^ about its axis.  Equation 38b tells us that true align- 

ment of a dipole at the position of an equivalent dipole gives 

a null response whatever the dipole moment.  Moreover, large 

dipole moments provide means of discerning minute misalignment, 

(38d) 
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To position and align the moment of a coil approximating 

a magnetic dipole precisely at the location and orientation 

of an equivalent dipole of an ambient gradient field, then, 

we first align the gradiometer basis coincident with the 

basis comprised of principal axes of the ambient gradient 

field, as described subsequently, and place the coil at the 

location and orientation of an equivalent dipole determined 

from measurements of gradients in a fiducial basis.  We then 

drive the coil with current oscillating at a frequency of 

say 5 Hz and adjust location and orientation of the coil un- 

til the peak at 5 Hz in the spectrum of gradiometer response 

(as displayed by a real-time spectrum analyzer)' falls below 

the noise level of the instrument.   The plane defined 

by the dipole axis, m, and position vector, r, is then nor- 

mal to the eigenvector e„.  Next, we rotate the gradiometer 

90 degrees about its axis, so that pickup loops face the 

dipole, and again adjust location of the coil until the spec- 

tral peak falls below the level of instrument noise.  Princi- 

pal axes of the gradient field of the dipole are then coinci- 

dent with principal axes of the ambient gradient field, so 

that the matrix 6T vanishes, but the matrix 6A does not neces- 

sarily vanish.  Finally, we return the gradiometer to the 

fiducial basis and adjust a steady current in the coil until 

rotating the gradiometer about its axis gives a minimum re- 

sponse so that g/g = -1.  The response during rotation is 

then proportional to g 6x- 

To align the gradiometer basis precisely coincident with 

the basis comprised of principal axes of an ambient gradient 

field, we initially align the basis with principal axes de- 

termined from measurements of gradients in a fiducial basis, 

so that the matrix 

F = A - 6T (39a) 
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represents gradients in the gradiometer basis, where elements 

of the diagonal matrix A are eigenvalues of the ambient gra- 

dient field and 

6T = (A1-A2)6TZ 

(Aj-A1)6Ty 

{A1-A2)6TZ 

(A
2-

A
3
)6T

X 

(A3-A1)6Ty 

(A2-A3)6Tx 
(39b) 

Angular deviations are given by the relations 

6T  = 6$sin0sinf + (SOcosT 
x 

6T  = 6$sin0cosf - 60sinf 
y 

(39c) 

(39d) 

and 

6T     =   6<I>cos0  +   SV 
z 

(39e) 

where 6$, 6G, and 6T are deviations in the Euler angles 

*# 0, and T that define a rotation from the fiducial basis 

to the basis comprised of principal axes of the ambient gra- 

dient field. 

Rotating the gradiometer about its axis through an angle 

i|i then gives the response expressed by the relation 

q22(i')   =   (A3-A2)6TXCOS^ - (A1-A3)6Tysini|j 

Equation 40a tells us that true alignment of the gradiometer 

axis with the eigenvector ^3 gives & null response during rota- 

tion of the gradiometer about its axis, so we adjust angular 

deviations ö* and 60 until rotation gives a null response. 

(40a) 
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Similarly, rotating about the x» axis of the gradiometer basis 

gives the response expressed by the relation 

g-,(ifi) = (A -A0)6T cosii   +   (A -A )6T sinip (40b) 

Equation 40b tells us that true alignment of the x2 axis of 

the gradiometer basis with the eigenvector e» gives a null 

response during rotation and so affords means of adjusting 

the angular deviation 6f. 

2.  Results of Preliminary Tests 

The wooden gimbal used to orient the gradiometer provides 

only vertical and horizontal axes of rotation and so pre- 

cludes aligning the gradiometer basis coincident with the 

basis comprised of principal axes of an ambient gradient 

field.  Although we can not use the present gimbal to test 

thoroughly the procedure outlined above for cancelling am- 

bient gradients, our preliminary tests show that a steady 

current in a coil placed approximately in the position of 

an equivalent dipole reduces ambient gradients by about a 

factor of 100. 

To facilitate positioning the coil, we first chose to cancel 

ambient gradients resulting from an iron sphere, which was placed 

4.5m north of the gradiometer and has a radius of 0.74 m.  Magni- 
4 

tude of the earth's magnetic field is about 4.5 X 10  nT at 

the test site, so that the dipole induced at the center of 

the sphere by the earth's magnetic field produces gradients 

having magnitudes proportional to 

4 

= 133 nT/m 9 = 
3B 

R :£) 

I 
54 



The relation 

() 23 g  sinxcosncosOcos(()-(sinxsinQcos2G + pCosxsin29) sin(t)   {41a) 

gives the gradiometer response to the induced dipole, where 

polar angles $  and 9 c -ecify direction, in the gradiometer 

basis, of the position vector 7 pointing from the dipole to 

the gradiometer, as shown in Figure 4, and angles x -^d Q 

define direction of the dipole axis, which is parallel to the 

earth's magnetic field, with respect to the position vector. 

Because of rough terrain at the test site, the center of the 

sphere is somewhat above the center of the gradiometer, but 

we place the sphere so that the position vector and gradio- 

meter axis lie approximately in a vertical plane containing 

the earth's magnetic field vector.  Then fi = 3Tr/2( and so 

'23 £ 2^-\~l   ) sin2 (9-a) sin(*> (41b) 

where the expression 

2  1/2 
X,-A- = g(4+5cos x) (41c) 

gives the difference in eigenvalues X, and X^  of qradients of the 

induced dipole field and the angle a,determined by the relation 

tan 2a = (2/3)tanx, qives inclination of the eigenvector e, to the 

position vector, as shown in Figure 11,and x = TT-(cK+ö ,) . 

The local dip angle of the earth's magnetic field, <j),, is 

about 55° at the site, and the dip angle of the position vec- 

tor, 9,, is about 5 or so. 

Rotating the gradiometer about its axis (0<())<2TT) and 

measuring amplitude of the response gives a gradient magnitude 

of 56 nT/m, and so we conclude from Equation 41b that 9-a * 11 , 

which tells us that the gradiometer axis is tilted somewhat 
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from vertical.  Because alignment procedures at the 

site are crude at present, we exoect angular deviations 

of the order of 0.1 radians or a few degrees. 

To cancel gradients of the induced dipole field, we place 

a coil about 5.6 m north of the gradiometer and align its 

axis, parallel to the earth's magnetic field vector.  The coil 

comprises 1000 turns of wire wound on an aluminum frame about 

0.97 m in diameter.  After making slight adjustments in lateral 

position and orientation of the coil, we find that a current 

of 0.6 A in tho coil reduces amplitude of the response to rota- 

tion of the gradiometer about its axis from 56 nT/m to 0.49 nT/m, 

or by a factor of 100.  For a current of 0.6 A, the moment of 
2 

the coil is 444 A m , and so 

By m 

4TTr 

= 135 nT/m , 

with r = 5.6 m, which is nearly equal to the strength of gra- 

dients produced by the sphere, g = 133 nT/m. 

Because a magnetic dipole parallel to the earth's magnetic 

field at the center of an iron sphere describes the gradient 

field surrounding the sphere, placing a coil at the position 

of an equivalent dipole of the gradient field is straightfor- 

ward.  For irregularly shaped magnetic objects, however, de- 

termination of location and orientation of equivalent dipoles 

requires measurement of gradients in a fiducial basis.  As a 

first test of cancellation techniques for irregularly shaped 

objects, we placed a collection of oil drums and steel olanks 

approximately 5 m north of the gradiometer. 
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We define a fiducial basis by rotating the gradiometer 

about its axis, when vertical, until a null response is 

obtained, so that g^ vanishes in the fiducial basis.  To 

measure gradients in the fiducial basis, we rotate the gra- 
A 

dioraeter first through an angle $  about its axis (the x3 
axis of the gradiometer basis) and then through an angle 6 

about the x  axis of the gradiometer basis, so that the 

expression 

'23 -[ f12cos2(t) - 2(2Y11+Y33)s:i n2<b jsin 6 - y, ..sin^cosO (42a) 

gives its response in terms of gradients, -^ in the fiducial 

basis and angles of rotation.  Rotations about the gradiometer 

axis, 6=0, ^nd about horizontal axes corresponding to * = 0 

and $  =  TI/4 then determine  gradients y^ and Y12 
and the sum 

2y   + y  .  Next, we rotate the gradiometer through an angle 

^ about the x, axis of the gradiometer basis, so that the 

expression 

^23 = 1^11 + 2Y33
)sin2^ 

gives its response in terms of gradients in the fiducial basis 

and the angle of rotation and so determines the sum y11 + 2y33. 

Since y23 vanishes, the procedure measures the four nonvanishing 

gradients in the fiducial basis. 

From gradients measured in the fiducial basis, we find, as 

described in the Appendix, location, orientation, and gradient 

strength g of the two pairs of equivalent dipoles corresponding 

to the collection of magnetic objects.  The gradient strength 

of the objects is about 67 nT/m, and the plane containing axes 

of equivalent dipoles is no longer vertical as for the iron 

sphere but is tilted about 30° from vertical about the ^ axis 

of the fiducial basis. 

(42b) 
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Because the gimbal used to orient the coil provides only 

a horizontal axis of rotation, it precludes accurately aligning 

the axis of the coil in a tilted plane.  Crude placement of 

the coil at the position of an equivalent dipole, however, 

reduced gradients by about a factor of 30. 

D, ALIGNING FOR NULL RESPONSE 

To suppress gradient fluctuations resulting from fluctuating 

magnetization currents in nearby magnetic objects, we orient 

the gradiometer so that an equivalent dipole corresponding to 

the steady gradient field of the objects lies along the x1 

axis of the gradiometer basis with its axis in the plane con- 

taining pickup loops.  To align the gradiometer, we bogin by 

following the procedure described for cancelling steady gra- 

dients.  Namely, we align the gradiometer basis coincident 

with the basis comprised of principal axes of the steady gra- 

dient field and precisely position a coil at the location and 

orientation of an equivalent dipole. 

With a current oscillating in the coil, we then tilt the 

gradiometer about the x„ axis of the gradiometer basis and 

rotate it about its axis until a maximum response is attained 

so that pickup loops face the coil.  Next, we point the axis 

of the coil directly toward the gradiometer and turn the gra- 

diometer about the x. axis of the gradiometer basis until a 

null response is obtained.  The axis of the coil then lies 

along the x» axis of the gradiometer basis. 

Finally, we return the axis of the coil to its initial 

position and turn the gradiometer about its axis until a null 

response is obtained.  The coil then lies along the x^  axis 

of the gradiometer basis witn its axis in the plane containing 

pickup loops.  The response tnen vanishes for every orien- 

tation of the coil. 
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1.  Procedure 

To align the gradiometer for a null response from a current 

oscillating in a coil positioned at the location and orienta- 

tion of an equivalent dipole, we first align the gradiometer 

basis coincident with the basis comprised of principal axes 

and then turn the gradiometer through an angle 7r/2 - a about 

the x~ axis of the gradiometer basis, so that the coil then 

lies along the x, axis of the gradiometer basis with its axis 

in the plane containing pickup loops.  The matrix 

R (4> , e . \\i)   =  R (*, 0, m(n/2 - a) a  a   a   a     p 
(43a) 

represents consecutive rotations of the gradiometer from a 

fiducial basis first to the basis comprised of principal axes 

(represented by R ) and then about the x_ axis of the gradio- 
P ^ 

meter basis through the angle IT/2 - a.  Angles <t>, 0, and ¥ 

are Euler angles specifying a rotation to the basis comprised 

of principal axes, and the angles 4 , 8., and i<     are Euler 

angles specifying the rotation that aligns the gradiometer 

for a null response; namely. 

R (<{) , 0 , * ) = ZU. + Tr/2)X(6 )Z(i|0 a  a   a   a      c< a   a 
(43b) 

From Equation 36a that specifies location and orientation 

of an equivalent dipole in terms of Euler angles defining a 

rotation to a basis comprised of principal axes, we then find 

that 

R U , e , iM = R((K 0, ü)Y(7T/2) , a  a  a  a 
(44a) 

so that the relations 

cosö  = sinScos^ a 
(44b) 
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sinO sin((}) -({))= -sinfi 
3        ■ i 

sinO cos (4) -(}>)= -cosöcosfi 
61 Si 

cosij;     =   s'inOsiniil)   -   $   ) 

{44c) 

(44d) 

(446) 

and 

ainty    = cos9sin8  - sin9cos6 cos (4) - (j> ) a a a        a 
{44f) 

give Euler angles 0 # 9 . and ^  in terms of angles 0, 9, and 

Q that specify location and orientation of an equivalent dipole. 

When the gradiometer is aligned for a null response, gra- 

dients are given by the relation 

T = R GR 
a  a 

(45a) 

wnere the relation 

G = R((t), 9, 11)0 (g,x)«(*. 9» ß) (45b) 

with G (g,x) given by Equation 10a, gives gradients in the 

fiducial basis resulting from current in the coil positioned 

at the location and orientation of an equivalent dipole.  For 

true alignment, then. 

ro = Y(TT/2)Gy(g,x)Y(7i/2) = g 

"-2cosx 0 -sinx 

0 cosx 0 

-sinx 0 cosx 

(45c) 

where x is the polar angle giving inclination of the a:is of 

the coil to its position vector.  Equation 45c shows that gra- 
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dients are then independent of the azimuthal angle Q  and 

that the gradiometer response vanishes whatever the polar angle 

X and so vanishes for every orientation of the coil. 

For misalignment of the gradiortieter, R  = R  R x, where a   ao ao 
R . represents an infinitesimal rotation.  We then find that 

r = r - a6r 
o     a 

(46a) 

where 

6r =6A 
a   x 

0  sinx  0 

sinx   0   0 

0     0   0 

■6A 

-2sinx  0  3cosx 

0    0    0 

. 3cosx  0  2sinx 

-6k. 

0  3cosx 0 

3cosx  0  sinx 

0   sinx 0 
(46b 

6A  = 6({)sinÜ sinil»  + (SBcosip   , 
x        a   a        a 

6A  = 6(J)sine cos^= - 66sintjj   , y        a   a        a 

(46c) 

(46d) 

and 

6A = 64)Cose  + &\l) 
z        a 

To make adjustments of 6(Ji and 66, then, first we orient 

the gradiometer for a null response and turn it about i'^s  axis 

to obtain a maximum response from current oscillating in the 

coil, so that picxup loops face the coil.  Its response is 

then given by 

g  ■ g I -sinx + (6$»ine cOB^a - <S6sin40 Scosx I 

We then point the axis of the coil directly at the gradiometer 

so that x - 0 and adjust 6$  and 69 to obtain a null response. 

(46e) 
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The axis of the coil then lies along the x- axis of the gra- 

diometer basis. 

To adjust Sty,  we return the axis of the coil to its initial 

orientation and turn the gradiometer about its axis to obtain 

a null response.  The coil then lies along the x, axis of the 

gradiometer basis with its axis in the plane containing pickup 

loops.  Finally, we point the axis of the coil in several di- 

rections to ensure that the response is null for every orienta- 

tion of the coil. / 

2.  Results of Preliminary Tests 

Although we can not thoroughly test the alignment procedure 

outlined above for suppressing noise from fluctuating magneti- 

zation currents in magnetic objects because the gimbal used to 

orient the ^radiometer precludes making the required alignments 

precisely, our preliminary tests show that crude alignment of 

the gradiometer reduces noise power from fluctuating magneti- 

zation currents in an iron sphere by a factor of about 100. 

As a first test of noise suppression afforded by aligning 

a gradiometer for a null response, we placed an iron sphere, 

having a radius of 0.46 m, at distances of 3.7 m and 1.8 m 

north of the gradiometer.  At each distance, we place the 

sphere so that the axis of the gradiometer and the position 

vector directed from the center of the sphere to the gradio- 

meter lie approximately in a vertical plane containing the 

earth's magnetic field vector. 

The magnetic dipole induced at the center of the sphere 

by the earth's magnetic field then gives a gradiometer response 

described by the relation 

'23 
2(4 2V* 

5cos2x)1/2sin2{e - a)sin* (48a) 
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where 0 and 0 are polar angles specifying direction of the 

position vector in the gradiomater basis; the relation tan 2a = 

(2/3)tanx determines the angle a; and y:  =  v   -   ((^ + 9^) , 

where 4, is the local dip angle of the earth's magnetic field 
d 

and 0,, the dip angle of the position vector.  The relation 

g = 
3B 
R 

(48b) 

gives gradient strength of the induced dipole, where B = 4.5 X 

104 nT is the strength of the earth's magnetic field at the 

site, R  is the radius of the sphere, and r, its distance from 

the gradiometer. At the distance r = 3.7m, g = 70 nT/m, and at 

r = i.8m, g = 1252 nT/m. 

Rotating the gradiometer about its axis and measuring am- 

plitude of the response gives a gradient magnitude of 7.8 nT/m, 

with r = 3.7m, and a magnitude of 136 nT/m, with r = 1.8m. 

The center of the sohere lies somewhat below the qra- 
diometer in each case, ed - -5°, and so for ^ = 55°, we con- 

clude from Equation 48a that in each case 6 - a = 3 , which 

again tells us that the gradiometer axis is tilted somewhat 

from vertical and that 9 = v/l  -  Ae with AB = 10 . 

To examine the affect of gradiometer alignment or suppressing 

noise from fluctuations in strength and direction of the dipole 

induced in the sphere that result from fluctuations in strength 

and direction of the earth's magnetic field, we express gradio- 

meter response in terms of components of the fluctuating di- 

pole in the gradiometer basis.  Namely, we write the fluctuating 

gradiometer response as 

6g23(t)   -  Ög-^t) (|)(cos26  -1) cos9sin2(J) 

+ 6g   (t) (j) [500329   -   1  -   5(cos29   -   1) cos2(J)J cos9 

-6g1(t) (|)(5cos29  +   3)sin9sin(})     , 

(49a) 
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where 

Sg^t) = g 
b. (; ) 

B r (49b) 

and bi(t) are components of the fluctuating part of the earth's 

magnetic field in the gradiometer basis.  For 6 = v/2  -  Aö, 

then. Equation 49a tells us that 

6g23(t) = 6g3(t)8in4) + ^| [figj^Ct) 5sin2(l) + 6g2 (t) (3-5co82(J))]   (49c) 

Moreover, Equation 48a shows that rotating the gradiometer 

about its axis until response to steady gradients vanishes 

gives the zero position for the angle $.     For 4) = 0, response 

to gradient fluctuations is suppressed; namely. 

6g23(t) S -(Sg2(t)Ae (50a) 

and for $ - TT/2, response to gradient fluctuation is unsup- 

pressed; namely, 

6g23(t) = 6g3(t) + 46g2(t)A( (50b) 

To investigate the effect of suppressing noise by aligning 

a gradiometer for a null response, then, we compare spectra 

of gradiometer response for the two alignments (() = 0 and $ = 

TT/2 with the iron sphere placed 1.8m north of the gradiometer. 

Figure 12a shows a spectrum obtained for the alignment 4) = TT/2, 

and Figure 12b shows a spectrum obtained the following day for 

the alignment 4/ = 0.  The heavy solid line in each figure de- 

lineates the spectrum of inherent instrument noise observed in 

a magnetically quiet environment, as shown in Figure 8 . 

Heavy broken lines delineate the spectrum expected without 
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effective suppression, which we determine from spectra of 

fluctuating components of the earth's magnetic field reported 

by Davidson, 1964, by using Equation 49b and presuming that 

variations in direction of the fluctuating magnetic field are 

Isotropie.  Light broken lines mark spectra expected with 
2 noise power reduced by a factor (AG) , as specified by Equa- 

tion 50a, with A0 = 0.1 radians. 

From Figures 12 a and 12 b, we first observe that spectral 

density of estiu'.ated spectra increases with decreasing fre- 

quency at about the same rate as spectral density of magnetic 

field fluctuations; namely, spectral densities are proportional 

to   (1/f)    (Davidson, 1964).  Next, we see that magnitudes 

of observed spectra, in both cases, are about at the level 
2 

expected when gradient fluctuations are reduced by a factor (A3) 

with Aö = 0.1 radians. Finally, the expected increase in level of 

observed spectra for $  =  TI/2 is not evident in Figure 12a. 

Equation 50b then suggests the conclusion that the verti- 

cal component of the fluctuating magnetic field is suppressed 

at the test site.  The conclusion is consistent with data from 

magnetic observatories (Campbell, 1975) that show the vertical 

component of magnetic field fluctuations at mid latitudes is 

appreciably smaller than the horizontal component. 

The slight increase in level at high frequencies of the 

observed spectrum shown in Figure 12b results from a class 

Pc 5 micropulsation event (Campbell, 1967; Saito, 1969) 

evident in the time series record shown in Figure  13. 

Pulsations begin at about 0400 hrs (PST) on 6 February 1976 

and continue for—5000 seconds as a damped sinusoidal oscil- 

la+-xon having a period of roughly 500 seconds.  Maximum peak- 

to-peak amplitude of the pulsation is about 350 nT. 
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l 

Spectra of gradiometer response observed when the iron 

sphere is placed 3.7 m north of the gradiometer are indistin- 

guishable from spectra observed in a magnetically quiet en- 

vironment.  Moving the sphere from 1.8 m to 3.7 m reduces 
o 

noise power by a factor of (3.7/1.8)  or about 300, and so 

we expect spectral levels comparable to inherent noise of 

the instrument. 
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Section VIII 

OPERATION AT THE OCEANOGRAPHIC TOWER 

Our field te3ts show that the construct of an equivalent 

dipole provides a useful means of describing response of the 

gradiometer to ambient gradients that are sensibly constant 

over the distance separating pickup loops (25 cm).  Pre- 

liminary tests of noise suppression techniques, developed by 

describing gradiometer response in terms of an equivalent 

dipole, demonstrate reduction of noise power by a factor of 

100 using crude means of aligning the gradiometer and suggest 

thai: reduction of noise is limited by alignment precision 

alone.  By improving alignment to a precision of 10 ' radians 

or 0.05 degrees, we expect to reduce noise power by a factor 

of 106. 

.iere, we use the construct of an equivalent dipole to 

estimate stability and alignment required to suppress noise 

enough to afford certain measurement of fluctuating gradients 

of magnetic fields generated above the surface by oceanic 

internal waves passing the oceanographic tower operated by 

the Naval Undersea Center.  The tower is locaced about one 

mile offshore near San Diego, California in water 18 m deep. 

Although internal waves passing the tower provide a well 

characterized and readily accessible source for first measure- 

ments of gradients of magnetic fields generated by internal 

wavos, magnetization currents in the steel structure of the 

tower produce steady as well as fluctuating local gradients 

that make the task of measuring fluctuating gradients from 

internal waves an exacting one. 

In what follows, we first describe gradients of the steady 

magnetic field near the tower, give typical spectra of fluc- 

tuating gradients expected from internal waves passing the 

67 



tower, and then soecify stability and aliqnment required to 

afford certain measurement of fluctuating gradients from 

internal waves. 

A.  GRADIENTS OF THE STEADY MAGNETIC FIELD NEAR THE TOWER 

To obtain requisite information for assessing effects of 

gradients resulting from magnetization currents in the tower 

structure, we used a fluxgate gradiometer to measure the 

steady gradient field in the vicinity of the tcwer (Gillespie 

and Podney, 1976).  We measured steady gradients at nine posi- 

tions due west of the tower in a vertical plane containing its 

centerline.  The pair of coordinates (Z», Z.J specify a posi- 

tion, where the coordinate Z» gives its horizontal distance 

in meters due west of the centerline of the tower and the 

coordinate Z^, its height in meters above the ocean bottom. 

The water depth is about 18 m. 

Table I lists eigenvalues (A , \2,   \^)   and polar angles 

(4),, 6,; 0», e2; (K, e3) giving directions of a set of eigen- 

vec tors (^ , e-, (2.J of the steady gradient field at the nine 
1' ~2' "3 

positions.  Figure 14 defines the fiducial basis used to 

reckon directions of eigenvectors.  The z3 axis is directed 

vertically downward; the z, axis, northward; and the z2 axis, 

eastward.  Table I shows that the eigenvector e2 points nearly 

northward and 10 to 20 degrees above horizontal.  The plane 

cortaining axes of equivalent dipoles, which is normal to e2, 

is then tilted 10 to 20 degrees about a horizontal axis pointing 

eastward and so is close to a vertical plane of symmetry of 

the tower structure.  The structure comprises four steel pilings 

set in a square array aligned north-south and east-west. 
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Table II lists parameters specifying location, orientation, 

and gradient strength of the equivalent dipole corresponding 

to the set of eigenvectors (e, , e„, e.,) at each position.  It 

shows that the position vector locating equivalent dipoles 

lies in the vertical plane of symmetry of the tower structure 

{$ '    90   ).     Figure 15 depicts location and orientation in the 

plane of symmetry of the equivalent dipole for each position. 

Dashed lines indicate locations of dipole images.  Lengths 

of vectors indicating orientation of dipole axes are propor- 

tional to respective dipole moments.  Gradient strength, g, 

of equivalent dipoles decreases with increasing horizontal 

distance, Z , from the tower centerline in proportion to Z„ 

with n = 2.55. 

In a vertical plane of symmetry of the tower structure, 

then, gradients from magnetization currents in the structure 

are represented by gradients of a dipole located in the plane 

of symmetry.  Asymmetry of the superstructure of the tower, 

however, tilts the axis of the equivalent dipole a few degrees 

out of the plane of symmetry. 

B.  SPECTRA OF FLUCTUATING GRADIENTS EXPECTED FROM INTERNAL 
WAVES PASSING THE TOWER 

Magnetic fields generated above the surface by progressive 

waves in a stratified ocean are circularly polarized in a 

vertical plane normal to wave crests, and their magnitudes 

decrease exponentially with height, h, above the surface as 
-kh e   , where k denotes wave number (Podney, 1975).  As a result, 

gradients parallel to wave crests vanish, and the matrix 

(Podney, 1976) 

G(h,r, t;k,a)) = g(1c,()j)e 
-kh 

sin(wt-k-r+n)  0  cos(wt-k-r+n) 

0       0       0 

cos(wt-k.r+n)  0 -sin(ut-k-r+n) 
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represents gradients at a height h above the surface in a basis 

having its z. axis pointing vertically downward; its 2, axis, 

in the direction of wave propagation k; and its z"« axis, parallel 

to wave crests.  The scalar g(k,ü)) gives the strength of gra- 

dients generated at the surface by a wave having a frequency 

10 and wave vector k, and n (k) is a phase shift. 

From 1'quations 51 and 12b, we conclude that an equivalent 

dipole representing gradients generated at a point above the 

surface by an ocean wave circles a sphere of unit radius about the 

point on a great circle path in a vertical plane normal to 

wave crests.  The axis of the dipole is tangent to the sphere 

in a vertical plane normal to wave crests, x = ■fT/2 and Q  = Tr/2, 

and circles the sphere at a frequency equal to one half the 

wave frequency; namely, 26 (t) = cot - k-r + n.  Its moment is 

proportional to wave amplitude. 

For surface waves, the relation 

g(k,u)) = Uk 
Aj ö(JJ\   r- 2   2       2   2     2 

1+f) sin 4),+ (l-f) cos (Kcos J 1/2 (52a) 

gives the strength of gradients generated at the surface by a 

surface wave that has a wave height ^(K,a)) and heads at an 

angle 9. east of magnetic north.  Here, B denotes maynitude of 

the earth's magnetic field; 0,, its dip angle; o, the electrical 

coniinctivity of seawater (^-4 mhos/m) ; and 

f - kDe -kD 

sinh kD 
(52b) 

where D denotes water depth.  The relation 

cot n = - t \l+j 
\cot(J) ,cos9h (52c) 
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gives  the phase  shift, 

For  internal  waves,   the  relation 

(U  aoA 2 2 2 1//2 

-2—JB(sin  (t)d+cos  (f^cos  eh n)        In(d,k) (53a) 

gives the strength of gradients generated at the surface by 
tab 

an nth mode internal wave that has a displacement £ (d,k,(jo) 

air a depth d(Ckd<D) and heads at an angle 9. n east of magne- 

tic north.  Here, 

D 

I„(d,k)    — 5<I>nU,k)e"kCkdJ:  , 
n $ (d,k) no 

(53b) 

where $ (ck) is an eigenfunction giving the profile of an 

nth mode wave.  Eigenfunctions vanish at the surface and 

bottom of an ocean and are orthonormal with respect to the 

weight function N2(z); namely; $ (0,k) = * (Dfk) = 0, and 

D 

s (DnU,k)$mU,k)N (Ode = 6nm (53c) 

where N(z) is the Brunt-Vaisäla frequency profile of a thermo- 

cline.  The relation 

tan nn - -^t^cosehin 
(53d) 

gives the phase shift. 
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We use Equation 53a to estimate spectra of fluctuating 

gradients expected from ii.ternal waves, it shows 

that strength of gradients generated at the surface is pro- 

portional to wave displacement at depth and that the coef- 

ficient depends on a weighted integral of an eigenfunction 

over depth, as expressed by Equation 53b.  From spectral 

measurements of isotherm displacements at the top of the 

thermocline together with the measure! thermocline profile, 

then, we compute spectra of fluctuating gradients expected 

from internal waves passing the tower.*  The waves pass 

the tower in packets of long-crested first-mode waves 

running close to due east, so 9^ TT/2.  Magnitude of the 

earth's magnetic field at the tower is about 47,200 nT 

and its dip angle is about 61° (Gillespie and Podney, 1976) 

Figure 1 shows three typical spectra of transverse gra- 
dients expected 7 m above the surface from internal waves passrng 

the tower compared to the inherent noice spectrum of the xnstru- 

ment.  Spectra shown in Figure 1 give the expected spectral re- 

sponse when pickup loops of the gradiometer face in the d.rectxon 

of wave propagation or, more specifically, when the ^1 — ^ 
the gradiometer basis is parallel to wave crests.  As xs ev.dent, 

spectral densities of fluctuating gradients expected from inter- 

nal waves are well above the level of instrument noise. 

* Fluctuating gradients from surface waves are neglibly 
small at frequencies of internal waves at the tower. 

74 



ALIGNMENT AND STABILITY REQUIREMENTS 

We plan to jut the gradiometer over water on a rigid non- 

magnetic cantilever extending horizontally 25 meters from the 

centerline of the tower in a vertical plane of symmetry. The 

gradient field of a dipole located in the plane of symmetry 

and having a gradient strength, g, of about 200 nT/m or 2 X 
5 

10 pT/m gives gradients at the position of the gradiometer 

from magnetization currents in the tower structure.  We re- 

present fluctuations in response of the gradiometer, which 

result both from fluctuations in its position and orientation 

and from fluctuations in magnetization currents in the tower, 

in terms of fluctuations in location, orientation, and gra- 

dient strengtn of the dipole. 

1.  Alignment 

Without aligning the gradiometer to suppress noise from 

fluctuating magnetization currents in the tower, we expect 

a spectral density of fluctuating gradients, NT, given by 

the relation 

NjU) [b(f)/B]2 = 1.25 X 10~4(l/f)2,6(pT/m)2/-Hz (54a) 

where the relation 

b2(f) = 6.31 X 10~6{l/f)2-6  (nT)2/Hz 

gives the spectral density of magnetic field fluctuations 

owing to changing ionospheric currents as reported by David- 

son, 1964.  We see from Figure 1 and Equation 54a, then,/ 

that gradient fluctuations from fluctuating magnetization 

currents in the tower mask gradient fluctuations expected 

from internal waves unless the gradiometer is aligned to 

suppress gradient fluctuations from magnetization currents in 
the tower. 

(54b) 
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By aligning the gradiometer for a null response with a 

precision of 0.01 radians or o. 6 degreer;, however, we re- 

duce the spectral density of gradient fluctuations owing to 

fluctuating magnetization currents in the tower by a factor 

of 10~4, which then puts it below the level of instrument 

noise.  We align for a null response by orienting the gra- 

diometer so that the dipole representing gradients of magne- 

tization currents in the tower is located along the ^ axis 

of the gradiometer basis with its axis in the plane containing 

pickup loops.  The plane containing pickup loops is then close 

to a vertical plane of symmetry of the tower structure. 

In order to align the gradiometer for a null response and 

at the same time to face pickup loops in the direction of in- 

ternal wave propagation, we choose the plane of symmetry so 

that internal waves cross the plane at nearly normal inci- 

dence.  Namely, we extend the cantilever from either the 

north or the south side of the tower.  Aligning the gradio- 

meter for a null response to suppress gradient fluctuations 

from fluctuating magnetization currents in the tower then 

gives a near maximum response to gradient fluctuations from 

internal waves as well. 

2.  Stability 

When the gradiometer is aligned for a null response, it 

responds only to displacements and changes in orientation that 

produce an effective rotation about the gradiometer axis of 

the equivalent dipole representing gradients from magnetiza- 

tion currents in the tower.  Namely, the relation 

g23(t) = ö<Ht) g sinx (55) 

i 
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then gives gradient fluctuations resulting from irregular motions, 

where 54) (t) is the effective angle of rotation about the gradio- 

meter axis, g is the gradient strength of the equivalent dipole, 

and the angle x gives inclination of its axis to the position 

vector locating the dipole in the gradiometer basis.  Our measure- 

ments give g = 2 X 10  pT/m and x = 115°.  From Equation 55a, 

we then expect a spectral density of fluctuating gradients re- 

sulting from irregular motion, N , given by the relation 

N (f) = 0.770(f)  (pT/m) /Hz  , s 
(55b) 

where $(f) is a spectral density of fluctuations in the effective 

angle of rotation about the gradiometer axis, in units of (seconds 
2 

of arc) /Hz. 

To keep spectral density of gradient fluctuations from irre- 

gular motions at the level of instrument noise in the bandwidth 

of gradient fluctuations expected from internal waves, nominally 

2 X 10   Hz to 5 X 10   Hz, the cantilever must limit angular 

deviations of effective rotations about the gradiometer axis to 
-5 a few secondr. of arc or about 10  radians in the bandwidth.  We 

require, then, that st:;uctural design of the cantilever limit 

rotational and translational fluctuations of the instrument 

relative to the tower to 10  radians ( 2 seconds of arc) and 

0.1 mm in the bandwidth of gradient fluctuations expected from 

internal waves.  A displacement of 0.1 mm at a radius of 25 m 

gives an angular deviation of about 1 second of arc. 

3.  Cantilever Design 

Figure 16 shows an elevation and top view of the structural 

desian developed by Mechanics Research, Inc. (Haire and Van Lerberg, 

1976) to give the requisite stability under wave, wind, and thermal 

loads expected during operations at the tower.  The cantilever is 

a four-sided truss space frame extending about 20 meters from the 
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face of the tower.  An 8 m base section made of tubular aluminum 

attaches to the tower supports, and a 12 m outer section made 

of a fiberglass laminate supports the instrument at the tip of 

the cantilever.  The instrument Dewar fits in a fiberglass gim- 

bal mount wnose three independent axes of rotation provide means 

of orienting the gradiometer axis as necessary.  A catwalk running 

the length of the cantilever provides access to the instrument. 
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Section IX 

CONCLUSION 

At present, we describe the response of a superconducting 

magnetic gradiometer in terms of the magnetic field and its 

gradients at the midpoint of the gradiometer axis.  The descrip- 

tion is a useful approximation provided gradients of the ambient 

magnetic field are sensibly constant over the length of the 

gradiometer axis.  The part of the response proportional to 

the magnetic field at the midpoint results from slight dif- 

ferences in area and orientation of the loops forming the pick- 

up circuit of the gradiometer and vanishes for a perfectly 

balanced gradiometer.  The part proportional to a gradient of 

the magnetic field at the midpoint depends of five independent 

elements of a matrix representing gradients of the ambient mag- 

netic field at the midpoint. 

To concisely describe the gradient response, we use the 

five elements to define location, orientation, and moment of 

an equivalent magnetic dipole that gives gradients at the mid- 

point equal to gradients of the ambient field.  Constructing 

an equivalent dipole lets us visualize the response to ambient 

gradients.  For example, the gradient fielC cf a dipole fluc- 

tuating about a mean location, orientation, and moment repre- 

sents fluctuating gradients from nearby magnetic objects.  A 

dipole circling a sphere of unit radius about the midpoint on 

a great circle path in a vertical plane normal to wave crests 

represents gradients from an ocean wave.  A swarm zc  djyolus 

circling the sphere represents grodiencs frorr u  fxcll  of ran- 

dom waves. 

Results of preliminary tests of graaioinit^r response axe 

consistent with the description based on a Jirt t order ap;. xi- 

mation.  Nonetheless, the results are noc precise  '...ouch ■. 
delimit the range of validity of the first orner  descriotion. 

We plan further tests using more accurate cpr'bals and a3 ignment 

procedures both to determine a more precise description of 

gradiometer response and to mark limits of valid:<y of the first 

order description. 
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FIGURE CAPTIONS 

Figure 1  Three typical spectra of fluctuating gradients of 

magnetic fields expected 7 m above the surface from internal waves 

passing the oceanographic tower operated by the Naval Under- 

sea Center as compared to the inherent noise spectrum of the 

instrument.  Spectra are estimates based on spectral measure- 

ments of isotherm displacements made during August 1972. 

Serial numbers marking spectra tell the month, day, and local 

time at the beginning of corresponding time series; for example, 

08211540 means August 21 at 15:40 hours (PST). 

Figure 2a Illustration of the instrument showing Dewar con- 

struction and principal components of the gradiometer probe. 

A wrapping of alternating layers of fiber glass cloth and 

aluminxzed Mylar, which is not shown, insulates the interior 

vessel.  The Dewar stands 48" high, is 26" in diameter, and 

weighs about 250 lbs. 

Figure 2b  Diagram of the superconducting circuit of the gra- 

diometer.  Two coplanar pickup loops, having a combined stlf 

inductance L , are oppositely wound in series and connected 
IT 

to the primary winding (having a self inductance L, ) of a 

transformer containing a normal metal shield between its 

superconducting windings that attenuates radio frequency 

interference (rfi) .  The secondary winding of the transformer 

has a self inductance L- and is connected to a field coil, 

having a self inductance Lf/ that couples flux to a super- 

conducting quantum interference device (SQUID) .  The SQUID 

has a self inductance L and is driven by a tank circuit s J 

connected to rocm temperature electronics.  The rfi trans- 

former, SQUID, and tank circuit are encapsulated in a super- 

conducting shield.  A super current I, flows in the pickup 

circuit, and a super current I-, in the coupling circuit. 
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Figure 3  Geometry of pickup loops comprising an axis of a 

superconducting magnetic gradiometer.  Centers of the two 

pickup loops are separated by a distance 2s, and their areas 

are A. and A2.  Normals tc the plane of each loop are directed 

along unit vectors fi, and ru, and radial vectors £", and p^ 

locate points within a loop contour.  The gradiometer basis 

x.  is fixed midway between centers of the loops and is 

located with respect to a fiducial basis by the vector R". 

Figure 4  Vector diagram depicting location and orientation 

of a magnetic dipole, in, with respect to the gradiometer 

basis |x. ^ .  Polar angles (j) and 6 specify direction of the 

position vector F locating the dipole.  The polar angle x 

and azimuthial angle tt  specify direction of the dipole axis 

with respect to the position vector.  The y3 axis of the 

basis \y\  points along the position vector; the y2 axis, 

along r X in; and the §.   axis, along (r X m) X r. 

Figure 5 Record of gradiomuter response during a clockwise 

rotation followed by a counter clockwise rotation about its 

axi;». Rotations are made stepwise in sixteen increments of 

22.5°, pausing at positions numbered 1 through 16 that cor- 

respond to numbered positions in Figure 6. Spikes mark move- 

ments between incremental positions, and flats mark values 

recorded while pausing. 

Figure 6 Orientation of positions 1 through 16 with respect 

to magnetic north.  Rotations begin with the x2 axis of the 

gradiometer basis pointing northward and proceed through posi- 

tions 1, 2, 3, ..., 16, 1 during a clockwise rotation and 

through positions 1, 16, 15, ..., 2, 1 during a counter clock- 

wise rotation. 

84 



Figure 7  Siqnature of hysteresis observed during rotation at 

an imbalance somewhat less than 10 ' m  .  The trace records 

gradiometer response during a stepwise oscillation of the x„ 

axis of the gradiometer basis about position 5 marked in 

Figure 6, beginning with a clockwise movement to position 7. 

Numbered flats mark values recorded while dwelling at cor- 

responding positions.  Spikes mark movements between positions 

in the sense denoted by vertical arrows. 

Figure 8  Data depicting the noise spectrum of the gradiometer 

operating in a magnetically quiet environment.  We use a 

calibration of 4.5 mV/(pT/m) to obtain spectral density in 
2 

units of (pT/m) /Hz, marked on the left hand coordinate scale, 

and a calibration of 12.7 V/A  to obtain spectral density in 

units of $     /Hz, marked on the right hand coordinate scale. 

Points marked by a circular dot • represent data obtained from 

digital records.  Points marked by a triangular dot ▼ repre- 
sent data obtained from a real-time spectrum analyzer.  Error 

bars mark limits corresponding to two standard deviations. 

Figure 9  Data depicting the spectrum of intrinsic noise of 

the SQUID sensor compared to the noise spectrum of the gradio- 

meter operating in a magnetically quiet environment.  The left 

hand coordinate scale gives spectral density in units of (pT/ 
2 2 m) /Hz, and the right hand scale, in units of * /Hz.  The 

-4 
conversion factor is 3.5 X 10  * /(pT/m).  The solid line de- 

lineates the spectrum of inherent gradiometer noise shown in 

Figure 8, as represented by the spectral form S(f) = (2.1 X 

10~3)/f1'3(pT/m)2/Hz, for f*0.1 Hz, and S(f) =   0.03(pT/m)2/ 

Hz, for f>0.1 Hz. 
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Figure 10  Expected enhancement of instrument performance from 

use of a thin-film dc type SQUID sensor.  Data points depict 

the spectrum of intrinsic noise of a thin-film dc type SQUID 
2 

in units of *  /Hz marked on the right hand coordinate scale, 

and the heavy dashed line marks a corresponding expected 
2 

spectrum of gradiometer noise in units of (pT/m) /Hz marked 

on the left hand coordinate scale.  The light dashed curve 

delineates the spectrum of intrinsic noise of a torodial 

point-contact type sensor as used in the instrument, in units 

of 9     /Hz, and the solid line marks the corresponding spectrum 
0 2 

of inherent gradiometer noise in units of (pT/m) /Hz. 

Figure 11  Magnetic dipole describing the induced gradient 

field at a radial position F outside an iron sphere magnetized 

by the earth's magnetic field.  Eigenvectors e^^ and e3 mark 

principal axes in a meridian plane for several values of the 

angle x = Tr " (^ + Q
A) •     The d;i-P angle' $$'   of the earth's 

magnetic field at the site is about 55 , and the dip angle 

6,, of the position vector, F, is +5° or so.  The angle a 
d A " between eigenvector e-. and the position vector is about 68 

for 9d = 0 and (^ = c5 . 

o 

Figure -12a Spectrum of gradient fluctuations from an iron 

sphere placed 1.8 m north of the gradiometer with pickup 

loops facing nominally north-south so that $ = TT/2.  The 

corresponding time series, called POSTA 9, begins 4 February 

1976 a4- 16:22 hours (PST) and ends 5 February 1976 at 09:40 

hours (PST).  The heavy solid line delineates the spectrum of 

inherent instrument noise shown in Figure 8, and ligtt and 

heavy dashed lines mark spectra expected with and without 

suppression of noise, respectively, owing to aligning for a 

null response. 
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Figure 12b  Spectrum of qradient fluctuations from an iron 

sphere placed 1.8 m north of the gradiometer with pickup loops 

facing nominally east-west so that (f) = 0.  The corresponding 

time series, called POSTA 10, begins 5 February 1976 at 15:15 

hours (PST) and ends 6 February 1976 at 16:37 hours (PST). 

The heavy solid line delineates the spectrum of inherent instru- 

ment noise shown in Figure 8, and light and heavy dashed lines 

mark spectra expected with and without suppression of noise, 

respectively, owing to aligning for a null response. 

Figure 13  Section of time series record POSTA 10 showing a 

class Pc  5 micropulsation event recorded on 6 February 1976. 

Pulsations begin at about 0400 hours (PST) and continue for 

.—S "'O seconds as a damped sinusoidal oscillation having a 

period of roughly 500 seconds.  (Gradient magnitudes marked 

on the left hand coordinate scale are relative to an arbi- 

trary zero.) 

Figure 14  Fiducial basis {z- / used to define measurements of 

gradients in the vicinity of the oceanographic tower.  The 

z*  axis points vertically downward; the z, axis, northward; 

and the z2 axis, eastward.  Polar angles (4),# 6^; ij^» 92' ^3' 

9,) specifying directions of the set of eigenvectors (e, , e-, 
3 A 

$_) at each position are listed in Table I.  Eigenvector e2 
points nearly northward and 10° to 20° above horizontal, and 

A /'1 O 
eigenvector e, points nearly due west and 5  to 15  below 

horizontal. 

Figure 15  Location and orientation in the vertical plane of 

symmetry of an equivalent dipole for gradients at each position 

near the oceanographic tower.  Heavy dashed lines mark loca- 

tions of dipole images.  Lengths of vectors indicating orien- 

tation of dipoles are proportional to respective dipole 

moments and decrease with increasing horizontal distance, 



-n 
, from the tower centerline in proportion to Z2  with n = 2.55. 

Coordinates (Z2, Z-) specify a position; Z„ gives its horizontal 

distance in meters due west of the centerline of the tower and 

Z., gives its height in meters above the ocean bottom.  Positions 

are nominally spaced at 2 m intervals vertically and 3 m inter- 

valr horizontally. 

Figure 16  Elevation and top view of the cantxlever support for 

the gradiometer. 
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APPENDIX 

GRADIENTS OF MAGNETIC FIELDS IN FrVEE SPACE 

We represent gradients of a magnetic field, b(R,t), 

by a matrix G having elements g..(R,t), where 

gij 
x..V (x.-b) , (i,j = 1,2,3) (la) 

in an orthogonal basis | x. I .  An element g. . represents 

the gradient in a direction x. of the component of magnetic 

field in a direction x The relation 

n 5.0) -     £ g. .u.v . , 
ID i D 

i»D 
A 

then, gives the gradient in a direction u of the component 

of magnetic field in a direction v, where u. and v. are 

components of the unit vectors u and v in the basis< x. > . 

We express r(u,v) as a matrix product by using the relation 

(lb) 

r(u,v) = UGV , (1c) 

where U and V are column matrices representing unit vectors 

u and v, respectively, and tilde marks a transposed matrix. 

Equation la shows that the sum of diagonal elements of 

a gradient matrix vanishes because the divergence of a 

magnetic field vanishes.  Moreover, the vector identity 

g.. - g.. ■ (x. X x.)*(V X b) (2) 
13   ji    i   j 

tolls us that matrices representing gradients of an irrota- 

tional magnetic field are symmetric; namely, G = G. 
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A magnetic field in free space is both nondiurgent and 

irrotational and so is the gradient of a harmonic function, 

iji;   namelv, b = \7IJJ, where V"iJ' = 0-  Conseauently, gradients 

of a magnetic field in free space are represented by a 

symmetric matrix that has a vanishing trace*, whose elements 

are given by 

92^ 
'ii 9x.^x . 

(3) 

Only five of the nine elements of a matrix representing 

gradients of a magnetic field in free space, then, are 

independent. 

An axis of a perfect gradiometer that is aligned in a 

direction x. and r.enses the component of magnetic field in 

a direction x. measures the element g^. of a gradient matrix. 

A gradiometer comprising two orthogonal axes that measure 

longitudinal elements g11 and a22 together with three mutu- 

ally orthogonal axes that measure transverse elements g12^ 

g  , and g23, then, determines gradients of a magnetic field 

in free space in the orthogonal basis defined by its axes. 

Because of Equation lb, matrix elements measured in the 

aradiometer basis in turn determine gradients in everv 

direction u of the component of magnetic field in ar.v direction v. 

A.  GRADIOMETER ROTATIONS 

As a gradiometer rotates, matrix elements measured in 

the gradiometer basis change continuously.  We describe 

gradiometer rotations by a matrix R that reoresents a rotation 

from a basis jx^ to a basis { Yj f- 

* The trace of a matrix is the sum of its diagonal elements. 
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The matrix R is orthoaonal*, and its elements are aiven bv 

A  ,A 
r.. = x.«y. 

For a vector represented by a column matrix Ux in a 

basis ix. > , the relation 

U  = RU 
y   x 

gives its representation 

resents rotation from the 
Because the matrix product expressed bv Kauation 1c is in 

variant, we find that the relation 

U  in a basis iy   \ ,   where R rep- 
y    •• A )  ^ M   •  ( A i 

> basis \ '*i\  to the basis < Yi > • 

(4) 

(5a) 

RG R x 
(5b) 

specifies the matrix G representing gradients of a magnetic 

field in a basis |y.| in terms of their representation Gx 
in a basis |x.I .  Elements of a gradient matrix measured 

in one basis then determine the gradient matrix in every 

other basis obtained by rotating the gradiömeter. 

We express a matrix representing a rotation as the pro- 

duct of three matrices representing three successive, inde- 

pendent rotations through the Eulerian angles $, 0, and f 

defined in Figure Al by the product (Indritz, 1963) 

*  The relation RR = RR = I, where I denotes the unit matrix, 

defines an orthogonal matrix. 
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R((P, 0, t) = Z(*) X(0) ZIV) 

where 
f 

cos *   -sin $   0 

(6a) 

zm  = sin * 

0 

cos $   0 

0     1 

{6b) 

and represents a rotation through an angle $ about a z-axis, 

and 

X(0) = 

10    0 

0   cos 0 -sin 0 

0   sin 0  cos 0 

(6c) 

and represents a rotation through an angle 0 about an x-axis. 

We note that Z(*) - Z(-*) and ^(0) = X(-0), so that R($, 0, 

f) = R(-f, -0, -<5>) • 

A rotation specified by Euler angles *, 0, and V,   however, 

is equivalent to rotation through an angle * about some axis 

specified by polar angles *o and eo with respect to the fi- 

ducial basis (Goldstein, 1959).  Namely, 

zu) - P((|»0, eo)R;«j>, 0, 1i')p((}.o,9o) (7a) 

so that 

RU0, eo; (j>) = P(^0, 9o)z(*)P(0o, eo) - R(«, 0, f) ,        (7b) 

where P(* , eo) - Z{4>0+v/2)X{QQ)   and represents a rotation 

from the fiducial basis to a basis having its z-axis aligned 

with the axis of rotation.  From Equation 7b we find that 

angles 4) , 9 , and <}) are expressed in terms of Euierian angles 

specifying the same rotation by the relations 
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o 
(8a; 

tan 6 
tan 0/2 

sir. 
+ t 

(8b) 

and 

cos (£/2 = cos 0/2 cos 
+ T (8c) 

To make the dependence on the angle of rotation 4) explicit, 

we write a rotation matrix as the sum 

R((i)0, eo; 4)) = E1((t)o, eo) + Ep((})o, 6o)cos((. + QU^e^sin*  (9a) 

where 

El(*o' Oo) = P(V eo)exczey?(*o' eo) ' 

E2(4)0, eo) = I - E^^, 6o) , 

(9b) 

(9c) 

and 

QU0.  eo) - Pi$0,  e0)ezP(<D0, eo) (9d) 

with 

0 0 0 
Ö 0 -1 
0 1 0 

e  = 
y 

0 0 1 
0 0 0 

-1 0 0 
, and e. 

0 -1 0 
1 0 0 
0 0 0 

The matrix Q corresponds to a sum of differential rotations 

about x^, and z axes of the fiducial basis, as expressed by 

the expansion 
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Q{(j) , e ) = c  sinOo cos4)o + e  sineo sin<))o + ez coseo, (10a) 

and for an infinitesimal rotation Aff), 

R(4) , 8o;A(t>) » I + Q(<t»0, eo)A()) 

Having presented means for describing gradiometer rota- 

tions, we now investigate changes in gradient signals pro- 

duced by changes in orientation of a gradiometer.  We first 

consider rotation about an axis of the gradiometer basis 

and then about an arbitrary axis. 

(10b) 

1.  Rotation about a gradiometer axis 

Naming of axes of a gradiometer basis is arbitrary, and 

so we call the axis of rotation the z-axis.  Following 

rotation of a gradiometer through an angle <i>  about its z- 

axis, the gradient matrix measured in the gradiometer basis, 

r(<J)), is expressed in terms of its initial value G by the 

relation 

TU) - Z(*)GZ((})) . (11a) 

Consequently, its elements y^  are given in terms of their 

1/2 

initial values g. ,, by the relations 

I 
Yll " -g33/2 +  g12 + (gll+g33/2) 

= -g^/2 - 22 '33' g?o + (gn+g^/2) '12 '11 ^33' 

1/2 

cos2(4>, - <j)) 

cos2(4)1 - 40 

^33 = g33 

12 
g12 + (gll+g33/2)2 

1/2 
sin2{4)1 - 4>) 

(12a) 

(12b) 

(12c) 

(12d) 

111 



13 (g ?, + q^)
1/2sin((l)0 + *) (12e) 

13   ^23 

and 

23 
2 ,1/2 (g^3 + g^)^ cosU2 + <D) 

(12f) 

where 

tan 24^ = g12
/(^ll + g33/2) 

(12g) 

and 

tan *2 = 913/l23 
(12h) 

We observe that the longitudinal gradient Y33 is con- 

stant, that longitudinal gradients Y11 and y22  vary sinusoi- 

dally about the mean value (g11 + g22)/2, and that transverse 

gradients vary sinusoidally about zero.  As a result, we can 

always find a null position for a transverse gradient by 

rotating a gradiometer about any one of its axes, since 

specification of a z-axis is arbitrary.  We can not^ind 

a null position for longitudinal gradients unless g12 > 
2 ^   „   ^r- rt^ ^a  a  .  Because the sum of 

g11g22» g23 >^22q33' or gi3 >giig33- 
diagonal elements vanishes, however, at least two of the 

conditions are satisfied.* 

2.  Rotation about an arbitrary axis 

During rotation of a gradiometer about an axis other than 

one of its three mutually perpendicular axes, each element 

* Nonetheless, determination of a nul1 P^^1^,^"" ^ngi" 
i-ndinal aradients is impractical because mean values ot 
sinis^daroscillations are experimentally indetermxnant. 
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of the gradient matrix oscillates aboivt a nonzero mean value. 

Oscillations are a sum of sinusoids having arguments 4) and 

24, where <t>   is the angle of rotation.  Amplitudes of sinusoi- 

dal oscillations depend on initial orientation of the gradio- 

meter and polar angles 4  and 9  specifying the axis of 

rotation with respect to its initial orientation. 

1 
The relation 

r(* , G ; (M = FU'J'Q, 9O; (fOGRf^, 0o; *) (13a) 

gives the gradient matrix obtained by rotating a gradio- 

meter through an angle (j) about an axis specified by polar 

angles ±     and 8  with respect to its initial oricnt-ation in 
^    o     o 

terms of the initial value G.  When the rotation matrix 
R((ti , 6 } 4>) is expressed explicitly in terms of the rota- 
tion angle by Equation 9a, we find that T {^   ,   8 ; 4)) 

is expressed as a sum of sinusoids with arguments $  and 2(|) 

by the relation 

TU , 9 ; <M = E1GE1  +   1/2(E2GE2 - QGQ) + 1/2 (E2GS2 + 

QGC)cos 24) + 1/2(E2GQ - QGE2)sin 2<t>    + (13b) 

(E1GE2 + E2GE1)cos()) + (EjGQ - QGEj^)^!^ , 

where matrices ^(^Q» e
0) ' E2^o' 9o^' and ^^ ' 6 ^ are ^iv611 

by Equations 9b, 9c, and 9d. 

Because mean values and amplitudes of sinusoidal com- 

ponents depend on polar angles cb  and 9o and on the initial 

matrix G, we can not always find a null position for trans- 

verse gradients by rotating a grediometer about an axis 
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other than one of its three mutually perpendicular axes. 

Nonetheless, for axes of rotation lying within a narrow 

cone about a gradiometer axis, defined by 90« 1 for a 

z-axis, we find from Equation 9a that 

RU . 9 ; (t)) = ZU) I + 6 EC*, *) o   o 
-« 1 , (14a) 

where 

E(())o, 4)) = sin((t)-4'0)+sin())o cos (<{>-^0) ~COB$Q Er(14b) 

so that 

rc* , o^; *) = ru) + o  o 
r((f))E(<|) , (t))-E(())o, (|))r(4>) (14c) 

where r(<t)) is given by Equation 11a.  We conclude from Equa- 

tion 14c that transverse gradients vanish during rotation 

of a gradiometer about an axis lying within a narrow cone 

about any one of its three mutually perpendicular axes. 

3.  Infinitesimal rotations 

For an infinitesimal rotation through an angle A^ about 

an axis specified bv polar angles *0 and 0o, we find from 

Equations 13a and 10b that the differential of the gradient 

matrix is given by 

TU , 6 ; A(j)) - G = A^ 
o  o 

GQ(<DO, eo) - QU0, eo)G 

where the matrix Q((J)0» 
) is expressed as a sum of differ- 

ential rotatxons about x,y and z axes of the fiducial basi' 

by Equation 10a.  From Equations 15a and 10a, we then find 

that differentials of the matrix elements are given by 

(15a) 

ii 
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Ag11   =   2{g12   A^   -   g^   A^y) (15b) 

Ag22   =   2(g23   A^   -   g12   A^) 

Ag33   =   2(g13   A^y   -   g^   A^) 

Ag12  = g^  A0)x  -  g23  A^ +   (g22  -  g11)A(Dz 

Ag^  =  -g12   Hx  +   (g11   -  g33)A<Dy  +  922^z 

(15c) 

(15d) 

(15e) 

(15f) 

and 

Ag23 = (933 " g22)
A*x + g12 A*y " g13A*z 

where 

A(j)  = A^sin 9  cos $ 

A(j) = A^sin 9  sin <bo 

and 

ä$     = A(l)Cos Ö 

(15g) 

(15h) 

(15i) 

(15j) 

A.  PRINCIPAL AXES OF A GRADIENT FIELD 

Because a gradient matrix is both real and symmetric, 

it is diagonal in an orthogonal basis comprised of principal 

axes with diagonal elements or eigenvalues \1,   A2, and Xj. 

Since the trace of a gradient matrix vanishes, X^^ +  \2 + 

X., = 0.  The diagonal matrix A and a matrix R specifying 

rotation from a gradiometer basis to the basis comprised 

115 



of principal axes determine the matrix G measured in a 

gradiometer basis; namely, A = KGR, so that G = RAR.  As 

a result, two eigenvalues and three Euler angles specifying 

orientation of principal axes with respect to a gradiometer 

basis are a set of five independent scalars that determine 

gradients measured in a gradiometer basis. 

If orientation of both the gradiometer basis and princi- 

pal axes is specified with respect to an arbitrary fiducial 

basis by matrices R  and R , respectively, then R = R Rf 
^   ^ g    p p   9 

and so G = R R AR R .  On the one hand, if principal axes 
9 P P g 

are taken as the fiducial basis, then R = I and G = R AR , 
p y y 

and on the other hand, if the gradiometer basis is taken as 

the fiducial basis, then **„ = I and G = R/Rp-  
For a gradio- 

meter aligned along principal axes, R = R and so G = A. 
y   p 

Transverse gradients then vanish, and longitudinal gradients 

equal the eigenvalues A,, }~,   and X,. 

Eigenvalues of a gradient matrix are roots of the charac- 

teristic equation 

det(G - AI) = (A - A,)(A - A0)(A - X,) - 0 (16a) 

or 

AJ - A(g 11 
+ g 33 + gllg33 + g12 + g 13 

+ g* )-det G=0 (16b) 

Roots of the characteristic equation are ordered, and we 

name them so that A1>A2>A3.  Because the sum of eigen- 

values vanishes, at least one root is positive and one is 

regative, so that A, and A3 are, respectively, the greatest 

positive root and smallest negative root of the characteristic 

equation. 
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Direction cosines of corresponding eigenvectors ek, 

which define directions of principal axes, form the columns 

of the matrix R specifying rotation from a gradiometer basis 

to the basis comprised of principal axes; namely, rik = 

x.-e .  Elements of the kth column of R are a solution of 
X   K 1 

the system of three homogenous equations 

a . .r ., = A, r ., yi] jk k ik 
i = 1,2,3 , (17) 

obtained from the matrix equation GR = RA.  The characteris- 

tic equation assures existence of a solution. 

Consequently, we find from Equation 17 that polar 
A 

angles *k and ek specifying the direction of ek with respect 

to the gradiometer basis are determined by the relations 

tan6kcos4)k 
. gi3(Xk ' q22) + g12g23 

(Ak - gll)(Ak " g22)"g12 

(18a) 

and 

taneksin({)k '23 
(Ak " ^l^ + g12g13 

(Ak - g11)(Xjc '22)"g12 

(18b) 

We observe that polar angles $£ = t^   and 6^ = TT-ek as 

well as (j)k and 0k are solutions of Equations 18a and IBb for 

each eigenvalue,"so that both ejf and -ek are eigenvectors 

corresponding to eigenvalue Ak, as is also evident from 

Equation 17.  Because the sense of an eigenvector is inde- 

terminant, we can combine three eigenvectors in eight ways 

to form eight orthogonal bases comprised of orincipal axes. 

Four of the eight bases are right-handed, and four are left- 

handed.  We exclude left-handed bases and find that four 

right-handed, orthogonal bases comprised of principal axes 
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/\  /  A 
are defined bythe four sets of eiqenvectors :^, (e, , e9, e.,), 
A        A   A ,  , A   A  A ,   ^ / A  A   A 7 (e-, -e2, -e^), {-e^,   -e2, e3), and (-e1, e?/ -e3). 

To determine a first set of eigenvectors, we choose 

e. and e., so that 0^9,^TT/2 and 0^B3^TT/2 and require 

right-handedness, namely that e2 = e, X e,, so that 

cos 6- = sin 93 sin 9. sin(4)1 - (K) (19! 

From Equations 18a and 18b, we then find a unique set of 

polar angles ((j), , 9.; (})„, 0„; ({)., 8,) defining directions 
A  A  A of the set of eigenvectors (e,, e2, e3).  Polar angles 

defining directions of the other three sets of eigenvectors 

are then directly determined.  For example, pol^r angles 

for the set (fe1,, -e^, -fe^) are given by the set («j^, Ql; 

4)2 + TT,  Tr-02;  (}>3 + r,  TT- ,) 

By expressing elements r,. of the matrix R specifying 

rotation from the gradiometer basis to the basis defined 

by the set of eigenvectors (ej, e2, 33) in terms of Euler 

angles $, Q, and lF, we find that the Euler anqles specifvinr 

the rotation are determined by the relations 

* = (^ + TI/2 , 

0 = e3 , 

cosT ■ sine, sin ((t>1-(t)3) , 

(20a) 

(20b) 

(20c) 

and 

sinT = sine2sin((|)3-(j)2) . (20d) 
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Euler angles specifying rotation from the gradiometer basis 

to bases defined by the sets of eigenvectors (e^ -e2, -e3) , 

{-L.   -£2, e3) , and (-^^ e 2, -^3) are given in terms of 

those of the first set by the sets ($ + n, TT - G, TT - T) , 

(♦, 0, TT + T), and (* + TT, TT - 0, 2TT - *) , respectively. 

As we show subsequently, eigenvalues of a gradient field 

at a point are equal to eigenvalues of the gradient field 

produced by a magnetic dipole located on a sphere of unit 

radius about the field point.  Because four sets of eigen- 

vectors correspond to the same set of eigenvalues, a magnetic 

dipole located at any one of four positions on the unit 

sphere produces the same magnetic field gradients at the 

field point. 

C.  GRADIENT FIELD OF A MAGNETIC DIPOLE 

We examine the gradient field of a magnetic dipole both 

to illustrate means of describing gradients of magnetic 

fields in free space and to provide the basis for demonstra- 

ting that gradients of a magnetic field at a point in free 

space are equal to gradients produced by a magnetic dipole 

located on a sphere of unit radius about the point. 

The gradient of the harmonic function 

4 - 
-y m-r _7 

0 ,— ,  p  = 471 X 10   H/m , 
3   '  Mo 

411 r 

gives, in MKS units, the magnetic field produced at a posi- 

tion r by a magnetic dipole of moment m.  The relation 

vii = 
4Tr r' 

2(m.f)r - r X (m X r) 

(21a) 

(21b) 
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then, expresses the magnetic field b as a sum of components 
A A 

parallel and perpendicular to the unit vector 'r, where r = 

r/r and m = m/m.  Equation 21b tells us that the magnetic 

field produced at a position r by a dipole of strength m 

is a sum of fields produced by one dipole of strength 

m cos y directed along r and another of strength m sin x 

directed perpendicular to r, where cos x = n'*• 

To examine gradients of the magnetic field of a dipole, 

we consider the gradient field in three right-handed, ortho- 

gonal bases:  (1) a basis | x^ > with its x3 axis aligned 

along the dipole axis m, which we call the dipole basis; 

(2) a basis | y. I with its y^ axis aligned along the po;. Ition 

vector r', which we call the position-vector basis; and 

(3) a basis |z. \ with its Q~  axis aligned in an arbitrary 

direction. 

Dipole basis 

We choora a basis /x.iwith the JL axis directed along 

in; the xn axis, along m X r; and the x^ the dipole ax.'s ..., u^v- ^2 
axis, along (a X r) X m.  From Equation 3 and the harmonic 

potential function of a dipole expressed by Equation 21a, 

then, we find that the matrix Gx representing gradients of 

the magnetic field of a dipole in the basis jxi[ is expressed 

as 

cosx(l - 5sin x)   0    sinxd - 5cos x) 

0        cosx 0 

sinxd - Sees x)   0   cosx (-2 + 5sin x) 

(22a) 
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where cosx = m«r and 

4. \r4/ 

We then find, from Equation 16b, that its eigenvalues 

are given by 

x    =  2 
1 

2 ,1/2 
(4 + 5cos x)    ~ cosx 

A2 = g cosx 

(22b) 

(23a) 

(23b) 

and 

A3 = 
"2 
2 

2  1/2 
(4 + 5cos x)    + cosx (23c) 

Figure AP delineates A /g, A„/g, and A /g as functions of 

X and shows that A, is positive, A3 is negative, and A2 
is positive for 0<x<^, TI/2 and negative for TI/2<X<TT. 

Moreover, the set of Euler angles (IT/2, G, TT/2) , where 

0 = X + a and 

tan 2a  - (2/3)tanx (0<><Tr/2) (24a) 

specifies a rotation from the dipole basis co the basis 

comprised of principal axes defined by the set of eigen- 

vectors (£,, e2, e3), as illustrated in Figure A3.  The 

angle a between the eigenvector ^3 and the position sector 

r ranges from 0 to -n/l  as x ranges from 0 to rr.  The relation 

tanß = (l/2)tanx (24b) 
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determines the angle ß between the magnetic field vector and 

the position vector, which ranges from 0 to it and as x 

ranges from 0 to TT . 

The sets of Euler ang.'es (3ir/2, TT - 0, TT/2) , (TI/2, 0, 

3TI/2) , and (3TT/2, TT - 0, 3.r/2) specify rotations to bases 

defined by the sets of eigenvectors (e^ -e2/ -e3), (-&1i 

-£2,   &3),   and (-e^ ^, -^3), respectively.  Figure A4 

depicts orientation of principal axes, marked by eigen- 

vectors e, and ^3, for several values of the angle x- 

Principal axes corresponding to eigenvalues X^ and A3 lie 

in a meridian plane of the dipole, the plane defined by the 

dipole axis and the position vector, and the principal axis 

corresponding to eigenvalue A- is normal to a meridian plane, 

Position-vector basis 

y3 ax 

We next choose an orthogonal basis |yil in which the 

is is directed along r and orientation of the dipole 

is specified by polar angles ft and x» as shown in Figure 

A5.  The matrix R(ft, x) defined by 

RW, X) = ZW + TT/2)X(X)Z(TT/2) (25) 

specifies a rotation that brings the basis jyj into coin- 

cidence with the basis | xi j« 

Consequently, the relatio.i 

G - R(fl, x)G R(ft, X) y X 

determines the matrix Gy representing gradients of a dipole 

field in the basis | y.jj in terms of their representation 

(26a) 

I 
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G  in the basis |x.| , as given by Equation 22a.  We then 

find that 

G = g 
y 

cos x        o 

0 cos x 

sin x cos 0 sin X sin SI 

sin x cos ^ 

sin x sin ^ 

-2 cos x 

(26b) 

Expression 26b tells us that longitudinal gradients in 

the basis j y. [ result from a dipole of strength m  cos x 
A directed along y3 and that transverse gradients result from 

dipoles of strength m sin x cos Q and m sin x sin Ü  directed 

along the y, and ^2 axes, respectively.  Eigenvalues and 

corresponding principal axes, of course, are the same as 

given before.  The set of Euler angles (fl + 7T/2, -a, -IT/2), 

however, specifies rotatior from the position-vector basis 

to the basis comprised of principal axes defined by the set 
_  , /A   A   A N of eigenvectors (e,, e^r   e3'• 

3.  Arbitrary basis 

Finally, we choose an arbitrary orthogonal basis |z^| 

in which orientation of the dipole is specified by polar 

angles A  and m m 
and direction of the position vector is 

specified by polar angles <t>r  and Qr,   as shown in Figure A6 

The matrix R^, 6 ) defined by 

RU r' )r) = Z(*r + TT/2)X(0r) 

specifies a rotation that brings the basis | z [ into coin- 

cidence with the basis | yi| defined in Figure A5 provided 

(27a) 

cos a  sin x ■ sin e
m
&in^m " *r^ 

(27b) 
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sin Ü  sin x " sin Orcosem - cosersinemcos (({J^ - 4>r)      (27c) 

and 

cos  x  = cosö  cosern +  sine  sine cos (4)In - ^r) (27d) 

The relation 

G, " R(4'T./ e^)R(Q, x)GvR(n, x)RUr, 6 ) , z     x   r        x IT  x 
(28a) 

then, determines the matrix G  representing gradients of a 

dipole field in an arbitrary basis  z.  in terms of their 

representation &  in the basis  xi 

that 

As a result, we find 

G = g cos z 
x ji - 3/2 A1 {tr,  er)| 

g sin x |cos n A2((|>r, er) - sin Ü  A3(4ir» 9r) » 
(28b) 

where I denotes the unit matrix. 

A1(())r, er) - 

A2(4.r, er) - 

and 

A3(^r, er) 

2cos2(i)  sin29   sin24)^sin 6^  coscf) sin29 r    r      r    r      x    x 

sin24)  sin2er  2sin
2(t)rsin er sin(})rsin2er 

coscj) sin20 sin^ sin26 2cos26 
r -i 

(28c) 

-sin2(j) siner cos2(t)rsiner   -8in4»rcoser 

cos2(}> sine sin2())rsiner    ccs())rcoser 

-sin<t)rcoser cos(t)rcoser        0 

coa2d sin2e^ (l/2fein2({)r.sin2e  cos* cos2e T r    r r    r    x    x 

(l/2)sin2ij) sin2er sin
2(j)rsin2er  sin(})rcos20r 

cos* cos2^ sin*^00829,.     -sin2e Tr    r      r    r x 

(28d; 

(28e) 
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In an arbitrary basis, then, either of two sets o'r 

four independent angles, (4^, 6^- Ü,   x) or (<t)r, 0^; ^ em) , 

and the scale factor q determine gradients of the magnetic 

field of a dipole.  Because five independent matrix elements 

determine gradients of a magnetic field in free space, gra- 

dients at a point in free space are equivalent to the gra- 

dient field of a magnetic dipole located on a sphere of 

unit radius about the point.  By requiring G = Gz for a 

matrix representing gradients of a magnetic field, v/e can 

in principle determine a set of four angles ((J^, 0r; ^ 6^ , 

which specify location and orientation of a dipole, and a 

scale factor g by solving the system of five equations obtained 

by equating matri\ elements.  Choosing a unit radius in the 

scale factor g then determines the strength of an equivalent 

dipole.  Nonetheless, the direct approach soon becomes fouled 

by algebra, and we choose another approach to obtain equiva- 

lent dipoles of a gradient field in free space. 

D.  EQUIVALENT DIPOLES OF A GRADIENT FIELD 

We seek location, orientation, and strength of a magnetic 

dipole that produces gradients, represented by a matrix Gd, 

at a point in free space that are the same as gradients 

represented by a matrix G; namely, we ask that the differen- 

tial matrix AG vanish, where AG = G - Gd.  If elements of a 

matrix vanish ^n one basis, they vanish in all bases, and so 

we require elements of the differential matrix to vanish in a 

basis in which G is diagonal. 

The relations 

Gd = RdAdRd 
(29a) 

and 

G = RAR 
(29b) 
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express matrices G, and G in terms of their respective dia- 

gonal matrices A, and A and matrices Rd and R that specify 

notations from a fiducial basis to bases comprised of their 

respective principal axes.  Rotation to principal axes of 

the dipole field is the resultant of two consecutive rotations 

expressed by the matrix product 

R j — RR r i d     o 
(29c) 

where Rr represents a rotation from principal axes of the 
o 

gradient field represented by G to principal axes of the 

gradient field of the dipole.  Consequently, we express 

the differential matrix AG as 

AG = R(A R6AdK6)R 
:29d) 

Expression 29d tells us that the differential matrix vanishes 

if both the principal axes of the two gradient fields coin- 

cide, R. « I, and their eigenvalues are equal, Ad = A. 

1.  Dipole orientation and location 

To determine orientation and location of an equivalent 

dipole, then, we first find eigenvalues (X^ A2, \^)   of the 

gradient field represented by the matrix G and a corresponding 

set of Euler angles <t, 6, and T that specify rotation from a 

fiducial basis to principal axes defined by the set of eigen- 

vector • (A,, e2, e3).  Namely, we use Equations 16b, 18a, 20a, 

20b, 20c, and 20d to find the set of five independent scalars 

(A , A,, *, 0, T) from the five independent elements (g^* 

g33, g12, g^, g23) of the matrix G.  We recall that the set 

of Euler angles specifies one of four possible rotations to 

a basis comprised of principal axes because the sense of an 
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eigenvector is indeterminant, 

Because eigenvalues of the matrix G are ordered Ui > 

A9 'A-) and their sum vanishes, we find from Equations 

23a. 23b, and 23c that they are equal to eigenvalues of 

the gradient field of a dipole at a position for which 

Jhh 11/2 
tan x = 1 , 0 < x < ff (30a) 

and 

g = 
u 3m 
o 

,  4 
4TTr 

-/ -\* 

1/2 
(30b) 

The set of five scalars (g, \,   $, 0, V), then, specifies the 

gradient field represented by the matrix G. 

Figure A7 shows orientation and location of the dipole 

m, that produces a gradient field whose eigenvalues are 

X,, X?, and \~  and whose principal axes coincide with the 

set of eigenvectors (e^ e2, e3) .  The dipole axis and 

position vector f, lie in the plane normal to the eigen- 

vector e?.  Equation 30a determines the angle x between the 

dipole axis and position vector, and Equation 30b, magnitude 

of the dipole moment.  Dashed lines in Figure A7 delineate 

orientation and location of dipoles that produce gradient 

fields, having eigenvalues X,, A2, and X3, whose principal 

axes coincide with the sets of eigenvectors ( e^ -e2, -^3)/ 

(.4  k       _£3), and K'kv   -e2, 63) as noted.  As is evident, 

the four equivalent dipoles lie in the plane normal to the 

eigenvector fL, and they form the two pairs (m^, r^; -n^, 

-r,) and (m2, f2; -m2, -x^   with the first pair associated 

with the eigenvector e,, and the second, with the eigenvector 
A 

-e2. 
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We observe from Figure A7 that column matrices 

M  = 
P 

sin(a+x) 

0 

cos(a+x) 

and 
%' 

-sina 

0 

-cosa 

( 31) 

give direction cosines of the dipole axis and position vec- 

tor m and r, respectively, in the basis defined by the set 

of eigenvectors (e^ £2, 63).  Consequently,in the fiducial 

basis uhe matrices M = RM and p « Rpp give orientation and 

location of the dipole whose principal axes, defined 

by the eigenvectors (^ £3, ^3) , coincide with those of the 

gradient field represented by the matrix G.  The matrix 

R describes rotation from the fiducial basis to principal 

axes of G as specified by the Euler and angles *, T, and 9. 

In the fiducial basis, we then find that polar angles 

and 6 defining direction of the dipole m1 are determined ym     m 
by the relations 

cosö  - cosG cos(a+x) + sinT sinO sin{a+x) 
m 

sinG  cosU -^ = cosf sin{a+x) 
m     m 

(32a) 

(32b) 

and 

inO sinU -♦) = sinH* cosO sin(a+x)-sinG cos(a+x) sino^sini^^ m    m 
(32c) 

and that polar angles *r and er defining direction of the 

position vector ^ are determined by the relations 

-cose  = cosG cosa + sinH* sinG sine 

-sine cosU -*) = cos1!' sina 

(32d) 

(32e) 
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and 

-sinö sin((J) -$) = sin'F cosG sina - sinöcosa , 
r     r 

Equations 32a through 32f give a prescription for 

transforming the set of five scalars (g, x» *» *» 0) to 

the set (g, 4) , 9 , (}) , 6 ) that specifies the gradient 

field represented by the matrix G in terms of the gradient 

field of its equivalent dipole m, located at position r^. 

The set (g, Tr + (() , ir-e , T+A / n-Qm)   corresponds to the 

equivalent dipole -m, located at position -f,.  We obtain 
11*11 ■L 

the set (g, 0 , 8 , 4) , 6 ) corresponding to the equivalent 

dipole in'  located at position f2 by adding TT to the angle 

f in Equations 32a through 32f.  Finally, the set 
iii' .i 

(q, TT+A , ir-e . IT+(J) , fT-e ) corresponds to the equivalent v^'   r    r    m    m 
dipole -iii« located at -r,« 

(32f) 

2.  Alignment errors 

A dipole placed at the position of an equivalent dipole 

cancells gradients at the correspondina field point.  Because 

positioning is imperfect, however, errors in aligning a can- 

celling dipole leave residual gradients at the field point. 

We describe residual gradients resulting f ^m errors in align- 

ment in terms of infinitesimal rotation c  principal axes 

from true alignment and infinitesimal deviation of eiaen- 

values from true values. 

The matrix 

R6 = i + A(j)Q((t)o, eo) 

specifies an infinitesimal rotation from principal axes of 

the gradient field represented by the matrix G through an 

angle L$  about an axis specified by polar angles $ and eo 

with respect to the principal axes, where QU » 6 ) is 

(33) 
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expressed by Equation 10a.  Eigenvalues of the gradient field 

of the cancelling dipole deviate from those of the gradient 

field represented by the matrix G by an amount AAd = A,-A. 

From Equation 29d, we then find that the relation 

AG -AA, + AcMAQ - QA) 

gives residual gradients resulting from alignment errors, 

The difference in eigenvalues results from deviations in 

the scale factor, Ag, and in the angle x as expressed by 

the relation 

AA, = A d 
U*) .    3A AX 

' g '  3x 

(34a) 

(34b) 

In the basis comprised of principal axes of the matrix 

G, then, residual gradients are given by 

,.      .    /7A,+6A.,\  ,    . 1/2 

1 "3 

Ag 72 - d^) **- + /W 1/2 AX 

(35a) 

(35b) 

A  v       /3X1+4X,\  /    ,1/2 
(35c) 

Ag12 - -(2X1+A3)A4)3 

Ag,, = (X1-X-)A0 '13 1 "3'"^2 

(35d) 

(35e) 

and 
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ig23  =   (A1
+2^3)A*1     » (35f) 

where 

A4),   = A(|)  sin6_ coatj) i o < (35g) 

A*«  =  A*   sin6     sin* 2 o o 

A4>3  =  A(J)   cosG 

(35h) 

(35i) 

and  A,,   A„,   and  A.   are  eigenvalues of 
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TABLE OF ROTATIONS 

ROTATION ABOUT AN x^ AXIS 

The matrix 

ZU) = 

cose})    -sinct)     0 

sintt)     cos4)     0 

0        0       1 

represents a positive rotation through an angle $  about the 

x^ axis of a basis.  The relation 

r = Z(4))GZ((|)) 

gives gradients, y. -,   in the rotated basis in terms of gra- 

dients, g.., in the initial basis, and so 

Yll = I(^ll + g22) + i(gll " <322)cOR2* + gi2sin2c() 

^22 " i(gll + ^^ - l(gll " g22)C0s2* " g12sin2(J) 

Y33 = g33 

12 =   g12cos2({)   -  j^ll  "  g22^sin2<^ 

Y13  =  SijCOi^  +  q23sin<t> 

Y23 = g23cos* ~ g13sin<f> 

I 
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ROTATION ABOUT AN *  AXIS 

The matrix 

1 0 0 

X(9) = 0 cose -sine 

0 sine cosO 

represents a positive rotation through an angle Q   about the 

x, axis of a basis.  The relation 

T = X(9)GX(0) 

gives gradients, y. ■,   in the rotated basis in terms of gra- 

dients, g. ., in the initial basis, and so 

Yll = gll 

, = ö^oo + ^-i^   + ö^oo " g,i)C082e + g„,sin2( 22   2^22       ^33'   2^22   "33' l23' 

Y33  - |{g22  +  q33)   "  |(g22  -  g33)cos2e   -  g23sin2( 

Y]2  =   <3i2cosQ   +  (3i3sinfi 

Y13  = g13COs9  -  g12sine 

Y23  =  g23COs9   "  i(g22   "  g33)sin2( 
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ROTATION ABOUT AN x  AXIS 

The matrix 

YdM = Z{TI/2)X(^)Z(TT/2) = 

COSlp 0 sinij; 

0 1 0 

-sini|/ 0 COSlj^ 

represents a positive rotation through an angle \p  about the 

x0 axis of a basis.  The relation 

F = Y{^)GY(i>) 

gives gradients, y. ■,   in the rotated basis in terms of gra- 

dients, g.., in the initial basis, and so 

Yll " h^ll   +  533) + l(gll " g33)cos2,i   gi3sin2* 

22 

33 

g22 

2(gll + g33) "Kl - g-,-,) cos2ij; + c,   . ..21,1; 

Y12 " V^003^   '   923sin^ 

Y13 = gi3cos2* + 2(gl] " g33)sin2^ 

Y93 = g23ccs^ + g12sin^ 
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FIGURE CAPTIONS 

figure Al  Three successivf    ependent rotations through 

the Eulerian angles C , 0, and '!' specifying a rotation 

from the basis I^J to a basis | y A   .     Rotations are made con- 

secutively in the following order:  (1) rotation through the 

angle * about the x, axis, represented by the matrix Z($); 

(2) rotation through the angle 0 about an x, axis in the di- 

rection x  X y,, represented by the matrix X(0); and (3) ro- 

tation through the angle T about the ^3 axis, represented by 

the matrix Z{f).  Positive rotations are right handed. 

Figure A2  Eigenvalues X,, A2, and A3 of the gradient field 

of a magnetic dipole having a unit gradient strength, g, shown 

as functions of the polar angle x between the axis of the di- 

pole and a position vector emanating from the dipole.  Eigen- 

values are indexed so that A1>A2>A3.  The determinant, det 

G, of a matrix representing gradients at a position in a di- 

pole field is positive for x > 1T/2 and negative for x<T'/2. 

Its trace vanishes and so \,   + A2 + A^ = 0. 

Figure A3  Basis comprised of principal axes defined by the 

set of eigenvectors (e1,   ^# Ö3) at a position Fin the field 

of a magnetic dipole m.  Eigenvectors (^ and e3 ere  in the 

meridian plane normal to the x2 axis, and eigenvector e2 

points along the negative x2 axis.  The angle a between eigen- 

vector ^3 and the position vector r  ranges from 0 to TT/2 as 

the polar angle x ranges from 0 to TI , and the angle 0 between 

the magnetic field vector b and the position vector ranges 

from 0 to TI . 

Figure A4  Orientation of principal axes, marked by eigen- 

vectors ^  and ö3, depicted for several headings in a meri- 

dian plane of the field of a magnetic dipole m. 
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Figure A5  Definition of the position-vector basis |yi| . 

-ts along the position vector r,   and polar angles Ü 

cify orientation of the dipole m in the basis |/yi^ • 

The yV, 

and x spec 

Figure Ä6  Polar angles i^,   8m; <Drr *,.)   specifying direction 

of the dipole axis and position vector in a basis z . 
i 

Polar angles c^ and B^  give direction of the dipole m, and 

polar angles ^ and er give direction of the position vector r. 

Figure A7  Location and orientation of the magnetic dipole ^ 

that produces a gradient field having principal axes coincident 

with the set of eigenvectors (^ ^2, ^3) -  The dipole axis 

and position vector are in the plane normal to the eigenvector 

g .  Dashed lines mark location and orientation of image dipoles 

that produce the same gradient field.  They form the two pairs 

(mlf T,; -.v -^1) 
dnd (sr2' ^V -Tff2'-F2) with the firSt Pair 

associated with the eigenvector $2 and the second, with the 

eigenvector ~^2' 
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METRIC SYSTEM 

BASE UNITS: 
Quantity 

length metre 
mass kilogram 
time second 
electric current ampere 
thermouynamic temperature kelvin 
amount of substance mole 
luminous intensity cpndela 

SUPPLEMENTARY UNITS: 

plane angle radian 
solid angle steradian 

Unit SI Symbol Formula 

DERIVED UNITS: 

Acceleration 
activity (of a radioactive source) 
angular acceleration 
angular velocity 
area 
density 
electric capacitance 
electrical conductance 
electric field strength 
electric inductance 
electric potential difference 
electric resistance 
electromotive force 
energy 
entropy 
force 
frequency 
illuminance 
luminance 
luminous flux 
magnetic field strength 
magnetic flux 
magnetic flux density 
magnetomotive force 
power 
pressure 
quantity of electricity 
quantity uf heat 
radiant intensity 
specific heat 
i'ress 
thermal conductivity 
velocity 
viscosity, dynamic 
viscosity, kinematic 
voltage 
volume 
wavenumber 
work 

metre per second squared 
disintegration per second 
radian per second squared 
radian per second 
square metre 
kilogram per cubic metre 
farad 
Siemens 
volt per metre 
henry 
volt 
ohm 
volt 
joule 
joule per kelvin 
newton 
hertz 
lux 
candela per square metre 
lumen 
ampere per metre 
weber 
tesla 
ampere 
watt 
pascal 
coulomb 
joule 
watt per steradian 
joule per kilogram-kelvin 
pascal 
watt per metre-kelvin 
metre per second 
pascal-second 
square metre per second 
volt 
cubic metre 
reciproc«! metre 
joule 

k| 
s 
A 
K 
mol 
cd 

rad 
sr 

K 
S 

H 
V 

N 
Hz 
Ix 

Im 

Wb 
T 
A 
W 
Pa 
C 
I 

l'a 

V 

I 

ml» 
(disintegration Vs 
rad/s 
rad/s 
m 
kg/m 
A-s/V 
A/V 
V/m 
V-s/A 
VV/A 
V/A 
W/A 
Nm 
)/K 
kgm/s 
(cycle)/s 
Im/m 
rdlm 
cd-sr 
A/m 
V-8 
Whim 

j/. 
N/m 
As 
N-m 
W/sr 
)/kg-K 
N/m 
W/m-K 
m/s 
Pa-s 
m/s 
W/A 
m 
(wave|/m 
N-m 

SI PREFIXES: 

Multiplication Factors 

1 000 000 000 000 ■ 
1 000 000 000 ■ 

1 000 000 = 
1 000- 

100° 
10 = 

0,1 ■ 
0.01 ■ 

0.001 ■ 
0 000 001 ■ 

0.000 000 001 ■ 
0.000 000 000 001 ■ 

0.000 000 00(1 (HH) 001 ■ 
0 000 000 000 (MIO (HH) 001 

HI'1 

10* 
10* 
10' 
101 

10' 
IO-' 
10-' 
io-' 
IO"» 
!«-• 

ur" 
io-'• 

Prefix 

tora 

mega 
kilo 
heclo* 
deka* 
duel* 
cenll* 
milll 
micro 
neno 
pii.o 
fiimlo 
•tto 

SI Symbol 

r 
C 
M 
k 
h 
dt 
d 

m 
M 
n 

r 
To be avoided where poMible. 


